286
Views
1
CrossRef citations to date
0
Altmetric
Review

Comparative anatomy and physiology of myrmecophytes: ecological and evolutionary perspectives

&
Pages 21-32 | Published online: 01 Oct 2015

References

  • Bronstein JL, Alarcon R, Geber M. The evolution of plant-insect mutualisms. New Phytol. 2006;172:412–428.
  • Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–453.
  • Risch SJ, Rickson F. Mutualism in which ants must be present before plants produce food bodies. Nature. 1981;291:149–150.
  • Brouat C, Garcia N, Andary C, McKey D. Plant lock and ant key: pairwise coevolution of an exclusion filter in an ant-plant mutualism. Proc R Soc B Biol Sci. 2001;268:2131–2141.
  • Yu DW, Wilson HB, Pierce NE. An empirical model of species coexistence in a spatially structured environment. Ecology. 2001;82:1761–1771.
  • Orona-Tamayo D, Heil M. Stabilizing mutualisms threatened by exploiters: new insights from ant-plant research. Biotropica. 2013;45:654–665.
  • Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett. 2014;17:185–192.
  • Seigler DS, Ebinger JE. Cyanogenic glycosides in ant-acacias of Mexico and Central America. Southwest Nat. 1987;32:499–503.
  • Heil M, Delsinne T, Hilpert A, et al. Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos. 2002;99:457–468.
  • Young TP, Stubblefield CH, Isbell LA. Ants on swollen thorn acacias: species coexistence in a simple system. Oecologia. 1997;109:98–107.
  • Palmer TM, Young TP, Stanton ML, Wenk E. Short-term dynamics of an acacia ant community in Laikipia, Kenya. Oecologia. 2000;123:425–435.
  • Yu DW, Wilson HB, Frederickson ME, et al. Experimental demonstration of species coexistence enabled by dispersal limitation. J Anim Ecol. 2004;73(6):1102–1114.
  • Schmitz OJ, Hamback PA, Beckerman AP. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat. 2000;155:141–153.
  • Rico-Gray V, Oliveira PS. The Ecology and Evolution of Ant-Plant Interactions. Chicago, IL: University of Chicago Press; 2007.
  • Fiala B, Maschwitz U. Food bodies and their significance for obligate ant-association in the tree genus Macaranga (Euphorbiaceae). Bot J Linn Soc. 1992;110:61–75.
  • Davidson DW, McKey D. Ant-plants symbioses: stalking the chuyachaqui. Trends Ecol Evol. 1993;8:326–332.
  • Fonseca CR. Herbivory and the long-lived leaves of an Amazonian ant-tree. J Ecol. 1994;82:833–842.
  • Federle W, Maschwitz U, Fiala B. The two-partner ant-plant system of Camponotus (Colobopsis) sp. 1 and Macaranga puncticulata (Euphorbiaceae): natural history of the exceptional ant partner. Insectes Soc. 1998;45:1–16.
  • Letourneau DK. Ants, stem-borers, and fungal pathogens: experimental tests of a fitness advantage in Piper ant-plants. Ecology. 1998;79:593–603.
  • Heil M, Baumann B, Andary C, Linsenmair KE, McKey D. Extraction and quantification of “condensed tannins” as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften. 2002;89:519–524.
  • Gonzalez-Teuber M, Kaltenpoth M, Boland W. Mutualistic ants as an indirect defence against leaf pathogens. New Phytol. 2014;202:640–650.
  • Treseder KK, Davidson DW, Ehleringer JR. Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature. 1995;375:137–139.
  • Fischer RC, Wanek W, Richter A, Mayer V. Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J Ecol. 2003;91:126–134.
  • Caspary R. De nectariis. 1848. The Bavarian State Library: Marcus; 1848.
  • Heil M. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol. 2015;60:213–232.
  • Weber MG, Keeler KH. The phylogenetic distribution of extrafloral nectaries in plants. Ann Bot. 2013;111:1251–1261.
  • Bentley B, Elias TS. The Biology of Nectaries. New York: Columbia University Press; 1983.
  • Elias TS. Foliar nectaries of unusual structure in Leonardoxa africana (Leguminosae), an African obligate myrmecophyte. Am J Bot. 1980;67:423–425.
  • Moran JA. Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J Ecol. 1996;84:515–525.
  • Merbach MA, Zizka G, Fiala B, Maschwitz U, Booth WE. Patterns of nectar secretion in five Nepenthes species from Brunei Darussalam, Northwest Borneo, and implications for ant-plant relationships. Flora. 2001;196:153–160.
  • Escalante-Pérez M, Heil M. Nectar secretion: its ecological context and physiological regulation. In: Vivanco J, Baluska F, editors. Secretions and Exudates in Biological Systems. Berlin: Berlin Springer; 2012: 187–220.
  • Zimmermann J. über die extrafloralen Nektarien der Angiosperm. Beihefte Botanisches Centralblatt. 1932;49:99–196.
  • Elias TS. Extrafloral nectaries: their structure and distribution. In: Bentley B, Elias TS, editors. The Biology of Nectaries. New York: Columbia University Press; 1983:174–203.
  • Mathur V, Wagenaar R, Caissard JC, et al. A novel indirect defence in Brassicaceae: structure and function of extrafloral nectaries in Brassica juncea. Plant Cell Environ. 2013;36:528–541.
  • Nepi M. Nectary structure and ultrastructure. In: Nicolson S, Nepi M, Pacini E, editors. Nectaries and Nectar. Dordrecht: Springer; 2007:129–166.
  • Escalante-Pérez M, Jaborsky M, Lautner S, et al. Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores. Plant Physiol. 2012;159:1176–1191.
  • Davis AR, Peterson RL, Shuel RW. Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Can J Bot. 1988;66:1435–1448.
  • Galetto L, Bernardello LM. Extrafloral nectaries that attract ants in Bromeliaceae: structure and nectar composition Can J Bot. 1992;70:1101–1106.
  • Falcão PF, de A Melo-de-Pinna GF, Leal IR, Almeida-Cortez JS. Morphology and anatomy of extrafloral nectaries in Solanum stramonifolium (Solanaceae). Can J Bot. 2003;81:859–864.
  • Heil M. Nectar: generation, regulation, and ecological functions. Trends Plant Sci. 2011;16:191–200.
  • Díaz-Castelazo C, Rico-Gray V, Ortega F, Angeles G. Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. Ann Bot. 2005;96:1175–1189.
  • Agthe C. über die physiologische Herkunft des Pflanzennektars. Berichte der Schweizerischen botanischen Gesellschaft. 1951;61:240–274. German.
  • Lüttge U. über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta. 1961;56:189–212.
  • De la Barrera E, Nobel PS. Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci. 2004;9:65–69.
  • Nicolson SW. Amino acid concentrations in the nectars of southern African bird-pollinated flowers, especially Aloe and Erythrina. J Chem Ecol. 2007;33:1707–1720.
  • González-Teuber M, Heil M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav. 2009;4:809–813.
  • Gonzalez-Teuber M, Heil M. The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J Chem Ecol. 2009;35:459–468.
  • González-Teuber M, Heil M. Pseudomyrmex ants and Acacia host plants join efforts to protect their mutualism from microbial threats. Plant Signal Behav. 2010;5:890–892.
  • Wenzler M, Hoelscher D, Oerther T, Schneider B. Nectar formation and floral nectary anatomy of Anigozanthos flavidus: a combined magnetic resonance imaging and spectroscopy study. J Exp Bot. 2008;59:3425–3434.
  • Kram BW, Carter CJ. Arabidopsis thaliana as a model for functional nectary analysis. Sex Plant Reprod. 2009;22:235–246.
  • Orona-Tamayo D, Wielsch N, Escalante-Perez M, et al. Short-term proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by Acacia cornigera ant-plants. Plant J. 2013;73:546–554.
  • Lüttge U. Green nectaries: the role of photosynthesis in secretion. Bot J Linn Soc. 2013;173:1–11.
  • Zimmermann M. über die Sekretion saccharosespaltender Transglukosidasen im pflanzlichen Nektar. Experientia. 1954;15:145–146.
  • Gaffal KP. How common is the ability of extrafloral nectaries to produce nectar droplets, to secrete nectar during the night and to store starch? Plant Biol. 2012;14:691–695.
  • Heil M, Rattke J, Boland W. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science. 2005;308:560–563.
  • Ruhlmann JM, Kram BW, Carter CJ. Cell wall invertase 4 is required for nectar production in Arabidopsis. J Exp Bot. 2010;61:395–404.
  • Carter C, Thornburg RW. The nectary-specific pattern of expression of the tobacco Nectarin I promoter is regulated by multiple promoter elements. Plant Mol Biol. 2003;51:451–457.
  • Carter C, Thornburg RW. Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci. 2004;9:320–324.
  • Liu G, Ren G, Guirgis A, Thornburg RW. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell. 2009;21:2672–2687.
  • Liu G, Thornburg RW. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J. 2012;70:377–388.
  • Kuo J, Pate JS. The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp): I. Morphology, anatomy and fine structure. Planta. 1985;166:15–27.
  • Heil M, González-Teuber M, Clement LW, Kautz S, Verhaagh M, Silva Bueno JC. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci U S A. 2009;106:18091–18096.
  • Ness JH. A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos. 2006;113:506–514.
  • Ness JH, Morris WF, Bronstein JL. For ant-protected plants, the best defense is a hungry offense. Ecology. 2009;90:2823–2831.
  • González-Teuber M, Bueno JC, Heil M, Boland W. Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service. PLoS One. 2012;7:e46598.
  • Heil M. Let the best one stay: screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. J Ecol. 2013;101:684–688.
  • Southwick EE. Photosynthate allocation to floral nectar: a neglected energy investment. Ecology. 1984;65:1775–1779.
  • Heil M, Fiala B, Baumann B, Linsenmair KE. Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol. 2000;14:749–757.
  • Nepi M, Ciampolini F, Pacini E. Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot. 1996;78:95–104.
  • Stpiczynska M, Milanesi C, Faleri C, Cresti M. Ultrastructure of the nectary spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biologica Cracoviensia Series Botanica. 2005;47:111–119.
  • Búrquez A, Corbet SA. Do flowers reabsorb nectar? Funct Ecol. 1991;5:369–379.
  • Nepi M, Guarnieri M, Pacini E. Nectar secretion, reabsorption, and sugar composition in male and female flowers of Cucurbita pepo. Int J Plant Sci. 2001;162:353–358.
  • Rickson FR. Developmental aspects of the shoot apex, leaf, and Beltian bodies of Acacia cornigera. Am J Bot. 1969;56:195–200.
  • Rickson FR. The ultrastructure of Acacia cornigera L. Beltian body tissue. Am J Bot. 1975;62:913–922.
  • Rickson FR. Anatomical development of the leaf trichilium and Müllerian bodies of Cecropia peltata L. Am J Bot. 1976;63:1266–1271.
  • Rickson FR. Developmental anatomy and ultrastructure of the ant-food bodies (Beccariian bodies) of Macaranga triloba and M. hypoleuca (Euphorbiaceae). Am J Bot. 1980;67:285–292.
  • O’Dowd DJ. Pearl bodies as ant food: an ecological role for some leaf emergences of tropical plants. Biotropica. 1982;14:40–49.
  • Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant-plant symbioses. New Phytol. 2014;202:749–764.
  • Yamawo A, Hada Y. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Ann Bot. 2010;106:143–148.
  • Rickson FR, Risch SJ. Anatomical and ultrastructural aspects of the ant-food cell of Piper cenocladum C. DC. (Piperaceae). Am J Bot. 1984;71:1268–1274.
  • Rickson FR. Ultrastructural differentiation of the Mullerian body glycogen plastid of Cecropia peltata L. Am J Bot. 1976;63:1272–1279.
  • Janzen DH. Interaction of the bull’s-horn acacia (Acacia cornigera) with an ant inhabitant (Pseudomyrmex ferruginea) in eastern Mexico. Kansas Univ Sci Bull. 1967;47:315–558.
  • Heil M, Fiala B, Linsenmair KE, Zotz G, Menke P, Maschwitz U. Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via symbiotic ant partners. J Ecol. 1997;85:847–861.
  • Orona-Tamayo D, Wielsch N, Blanco-Labra A, Svatos A, Farias-Rodriguez R, Heil M. Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation. Mol Ecol. 2013;22:4087–4100.
  • Heil M, Fiala B, Kaiser W, Linsenmair KE. Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Funct Ecol. 1998;12:117–122.
  • Fischer RC, Richter A, Wanek W, Mayer V. Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia. 2002;133:186–192.
  • Heil M, Baumann B, Kruger R, Linsenmair KE. Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology. 2004;14:45–52.
  • Heckroth HP, Fiala B, Gullan PJ, Idris AH, Maschwitz U. The soft scale (Coccidae) associates of Malaysian ant-plants. J Trop Ecol. 1998;14:427–443.
  • Davidson DW, Foster RB, Snelling RR, Lozada PW. Variable composition of some tropical ant-plant symbioses. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW, editors. Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. New York: Wiley; 1991:145–162.
  • Letourneau DK. Code of ant-plant mutualism broken by parasite. Science. 1990;248:215–217.
  • Linsenmair KE, Heil M, Kaiser WM, Fiala B, Koch T, Boland W. Adaptations to biotic and abiotic stress: Macaranga-ant plants optimize investment in biotic defence. J Exp Bot. 2001;52:2057–2065.
  • Folgarait PJ, Johnson HL, Davidson DW. Responses of Cecropia to experimental removal of Müllerian bodies. Funct Ecol. 1994;8:22–28.
  • Kautz S, Lumbsch HT, Ward PS, Heil M. How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution. 2009;63:839–853.
  • Jacobs M. On domatia-the viewpoints and some facts. Acad Weten Amsterdam. 1966;69:275–316.
  • Bequaert J. Ants in their diverse relations to the plant world. Bull Am Mus Nat Hist. 1922;45:333–621.
  • Benson WW. Amazon ant plants. In: Prance GT, Lovejoy TE, editors. Amazonia. Oxford: Pergamon Press; 1985:239–266.
  • Fiala B, Maschwitz U. Domatia as most important adaptations in the evolution of myrmecophytes in the paleotropical tree genus Macaranga (Euphorbiaceae). Plant Syst Evol. 1992;180:53–64.
  • Tepe EJ, Vincent MA, Watson LE. Stem diversity, cauline domatia, and the evolution of ant–plant associations in Piper sect. Macrostachys (Piperaceae). Am J Bot. 2007;94:1–11.
  • McKey D. Interaction of the ant-plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon. Biotropica. 1984;16:81–99.
  • Federle W, Fiala B, Zizka G, Maschwitz U. Incident daylight as orientation cue for hole-boring ants: prostomata in Macaranga ant-plants. Insectes Soc. 2001;48:165–177.
  • Tepe EJ, Kelley WA, Rodriguez-Castaneda G, Dyer LA. Characterizing the cauline domatia of two newly discovered Ecuadorian ant plants in Piper: an example of convergent evolution. J Insect Sci. 2009;9:1–9.
  • Bailey IW. Notes on neotropical ant-plants, II. Tachigalia paniculata Aubl. Bot Gaz. 1923;75:27–41.
  • Leroy C, Jauneau A, Quilichini A, Dejean A, Orivel J. Comparison between the anatomical and morphological structure of leaf blades and foliar domatia in the ant-plant Hirtella physophora (Chrysobalanaceae). Ann Bot. 2008;101(4):501–507.
  • Leroy C, Jauneau A, Quilichini A, Dejean A, Orivel J. Comparative structure and ontogeny of the foliar domatia in three neotropical myrmecophytes. Am J Bot. 2010;97:557–565.
  • Gegenbauer C, Mayer VE, Zotz G, Richter A. Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Ann Bot. 2012;110:757–765.
  • Chanam J, Sheshshayee MS, Kasinathan S, Jagdeesh A, Joshi KA, Borges RM. Nutritional benefits from domatia inhabitants in an ant-plant interaction: interlopers do pay the rent. Funct Ecol. 2014;28:1107–1116.
  • Solano PJ, Dejean A. Ant-fed plants: comparison between three geophytic myrmecophytes. Biol J Linn Soc. 2004;83:433–439.
  • Sagers CL, Ginger SM, Evans RD. Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism. Oecologia. 2000;123:582–586.
  • Blüthgen N, Wesenberg J. Ants induce domatia in a rain forest tree (Vochysia vismiaefolia). Biotropica. 2001;33:637–642.
  • Frederickson ME, Ravenscraft A, Miller GA, Hernandez LMA, Booth G, Pierce NE. The direct and ecological costs of an ant-plant symbiosis. Am Nat. 2012;179:768–778.
  • Yu DW, Pierce NE. A castration parasite of an ant-plant mutualism. Proc R Soc Lond B Biol Sci. 1998;265:375–382.
  • Gaume L, Zacharias M, Borges RM. Ant-plant conflicts and a novel case of castration parasitism in a myrmecophyte. Evol Ecol Res. 2005;7:435–452.
  • Fiala B, Meyer U, bin Hashim R, Maschwitz U. Temporary sterilization behavior of mutualistic partner ants in a Southeast Asian myrmecophyte. Ecol Res. 2014;29:815–822.
  • O’Dowd DJ. Pearl bodies of a neotropical tree, Ochroma pyramidale: ecological implications. Am J Bot. 1980;67:543–549.
  • Rudgers JA, Strauss SY. A selection mosaic in the facultative mutualism between ants and wild cotton. Proc R Soc Lond B Biol Sci. 2004;271:2481–2488.
  • Rutter MT, Rausher MD. Natural selection on extrafloral nectar production in Chamaecrista fasciculata: the costs and benefits of a mutualism trait. Evolution. 2004;58:2657–2668.
  • Radhika V, Kost C, Bartram S, Heil M, Boland W. Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta. 2008;228:449–457.
  • Millán-Cañongo C, Orona-Tamayo D, Heil M. Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis. J Chem Ecol. 2014;40:760–769.
  • Koricheva J, Romero GQ. You get what you pay for: reward-specific trade-offs among direct and ant-mediated defences in plants. Biol Lett. 2012;8:628–630.
  • Stanton ML, Palmer TM. The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology. 2011;92:1073–1082.
  • Romero GQ, Antiqueira PA, Koricheva J. A meta-analysis of predation risk effects on pollinator behaviour. PLoS One. 2011;6:e20689.
  • Rosumek FB, Silveira FAO, Neves FS, et al. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia. 2009;160:537–549.
  • Chamberlain SA, Holland JN. Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology. 2009;90:2384–2392.
  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ. The evolution of cooperation. Q Rev Biol. 2004;79:135–160.
  • Trager MD, Bhotika S, Hostetler JA, et al. Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS One. 2010;5:e14308.
  • Bull JJ, Rice WR. Distinguishing mechanisms for the evolution of cooperation. J Theor Biol. 1991;149:63–74.
  • Fisher BL. Facultative ant association benefits a neotropical orchid. J Trop Ecol. 1992;8:109–114.
  • Trager MD, Bruna EM. Effects of plant age, experimental nutrient addition and ant occupancy on herbivory in a neotropical myrmecophyte. J Ecol. 2006;94:1156–1163.
  • Heil M, Hilpert A, Fiala B, et al. Nutrient allocation of Macaranga triloba ant plants to growth, photosynthesis and indirect defence. Funct Ecol. 2002;16:475–483.
  • Folgarait PJ, Davidson DW. Myrmecophytic Cecropia: antiherbivore defenses under different nutrient treatments. Oecologia. 1995;104:189–206.
  • Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R. Putting ant-Acacia mutualisms to the fire. Science. 2008;319:1760–1761.
  • González-Teuber M, Eilmus S, Muck A, Svatos A, Heil M. Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J. 2009;58:464–473.
  • Maslin BR, Miller JT, Seigler, DS. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Australyan Systematic Botany. 2003;16:1–18.
  • Maslin BR. Generic and subgeneric names in Acacia following retypification of the genus. Muelleria. 2008;26:7–9.