843
Views
9
CrossRef citations to date
0
Altmetric
Review

Bone-mineral density: clinical significance, methods of quantification and forensic applications

, &
Pages 9-21 | Published online: 25 Jul 2019

References

  • Boivin G, Bala Y, Doublier A, et al. The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone. 2008;43(3):532–538. doi:10.1016/j.bone.2008.05.024
  • Currey JD. The many adaptations of bone. J Biomech. 2003;36(10):1487–1495. doi:10.1016/S0021-9290(03)00124-6
  • Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech. 1996;29(2):257–260. doi:10.1016/0021-9290(95)00048-8
  • Wang X, Shen X, Li X, Mauli Agrawal C. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31(1):1–7. doi:10.1016/S8756-3282(01)00697-4
  • Bala Y, Depalle B, Douillard T, et al. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater. 2011;4(7):1473–1482. doi:10.1016/j.jmbbm.2011.05.017
  • Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation? Bone. 2000;27(1):13–20. doi:10.1016/S8756-3282(00)00284-2
  • Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124(7):991–998. doi:10.1242/jcs.063032
  • Deng HW, Xu FH, Davies KM, Heaney R, Recker RR. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J Bone Miner Metab. 2002;20(6):358–366. doi:10.1007/s007740200052
  • Srinivasan B, Kopperdahl DL, Amin S, et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int. 2012;23(1):155–162. doi:10.1007/s00198-011-1822-8
  • Bailey D, Mckay H, Mirwald R, Crocker P, Faulkner R. A six‐year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res. 2009;14(10):1672–1679. doi:10.1359/jbmr.1999.14.10.1672
  • Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int. 1987;40(2):59–63. doi:10.1007/BF02555706
  • Kiel DP, Zhang Y, Hannan MT, Anderson JJ, Baron JA, Felson DT. The effect of smoking at different life stages on bone mineral density in elderly men and women. Osteoporos Int. 1996;6(3):240–248. doi:10.1007/BF01622741
  • Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997;7(4):331–337.
  • Khurana, JS. Bone Pathology. USA: Humana Press; 2009. doi:10.1007/978-1-59745-347-9
  • Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013:8–136. doi:10.1007/s11657-013-0136-1
  • Peel N. Disorders of bone metabolism. Orthop I Gen Princ. 2017;36(1):15–20. doi:10.1016/j.mpsur.2017.10.003
  • Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004.
  • Blake GM, Fogelman I. Methods and clinical issues in bone densitometry. In: Principles of Bone Biology. USA: Academic Press; 2008:1883–1894. doi:10.1016/B978-0-12-373884-4.00021-5
  • Fernadez Castillo R, Lopez Ruiz M. Assessment of age and sex by means of DXA bone densitometry: application in forensic anthropology. Forensic Sci Int. 2011;209:53–58. doi:10.1016/j.forsciint.2010.12.008
  • Sutlovic D, Boric I, Sliskovic L, et al. Bone mineral density of skeletal remains: discordant results between chemical analysis and DXA method. Leg Med. 2016;20:18–22. doi:10.1016/j.legalmed.2016.03.008
  • Hale AR, Ross AH. Scanning skeletal remains for bone mineral density in forensic contexts. J Vis Exp. 2018;29(31):1–19. doi:10.3791/56713
  • Curate F. Osteoporosis and paleopathology: a review. J Anthropol Sci. 2014;92:119–146. doi:10.4436/JASS.92003
  • Elkin DC. Volume density of South American camelid skeletal parts. Int J Oste. 1995;5:29–37. doi:10.1002/oa.1390050104
  • Wang X.. Cortical bone mechanics and composition: effects of age and gender. In: Silva M, editor. Skeletal Aging and Osteoporosis. Springer; 2013:53–85. doi:10.1007/978-3-642-32563-2
  • Feng X, McDonald J. Disorders of bone remodeling. Annu Rev Pathol Mech Dis. 2011;6:121–145. doi:10.1146/annurev-pathol-011110-130203.Disorders
  • Squillante RG, Williams JL. Videodensitometry of osteons in females with femoral neck fractures. Calcif Tissue Int. 1993;52(4):273–277. doi:10.1007/BF00296651
  • Havill LM, Allen MR, Harris JAK, et al. Intracortical bone remodeling variation shows strong genetic effects. Calcif Tissue Int. 2013;93(5):472–480. doi:10.1007/s00223-013-9775-x
  • Laval-Jeantet A, Bergot C, Carroll R, Garcia-Schaefer F. Cortical bone senescence and mineral bone density of the humerus. Calcif Tissue Int. 1983;35:268–272. doi:10.1007/BF02405044
  • Riggs BL, Iii LJM, Clinic M. Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest. 1981;67:328–335. doi:10.1172/JCI110039
  • Lee EY, Kim D, Kim KM, Kim KJ. Age-related bone mineral density patterns in Koreans (KNHANES IV). J Clin Endocrinol Metab. 2012;97:3310–3318. doi:10.1210/jc.2012-1488
  • Compston J. Age related changes in bone remodelling and structure in men: histomorphometric studies. J Osteoporos. 2011;2011:1–4. doi:10.4061/2011/108324
  • Weaver CM, Fuchs RK. Skeletal growth and development. In: Burr DB, Allen MR, editors. Basic and Applied Bone Biology. London: Academic Press; 2013:245–260. doi:10.1016/B978-0-12-416015-6.00012-5
  • Alswat KA. Gender disparities in osteoporosis. J Clin Med Res. 2017;9(5):382–387. doi:10.14740/jocmr2970w
  • Petit MA, Macdonald HM, Mckay HA, Lloyd T. Bone acquisition in adolescence. In: Osteoporosis, 3rd ed. Elsevier Inc.; 2008:743–758. doi:10.1016/B978-0-12-370544-0.50031-8
  • Hui SL, Slemenda CW, Johnston CC. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int. 1990;30–34(1).
  • Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. Sci Med. 2005;115:12. doi:10.1172/JCI27071.3318
  • Frost HM. Bone’s mechanostat: A 2003 update. Anat Rec Part A. 2003;275(A):1081–1101. doi:10.1002/ar.a.10119
  • Khurana J, Fitzpatrick L.. Osteoporosis and metabolic bone disease. In: Khurana J, editor. Bone Pathology. 2nd ed. Humana Press; 2009:217–238.
  • Marcus R, Feldman D, Nelson D, Rosen C, editors. Osteoporosis. 3rd ed. Elsevier Inc.; 2008. doi:10.1016/B978-0-12-370544-0.50004-5
  • Paschall A, Ross AH. Biological sex variation in bone mineral density in the cranium and femur. Sci Justice. 2018;58(4):287–291. doi:10.1016/j.scijus.2018.01.002
  • Warming L, Hassager C, Christiansen C; Center for C and BR. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002;13:105–112. doi:10.1161/circulationaha.111.039586
  • Karlsson MK, Obrant KJ, Nilsson BE, Johnell O. Changes in bone mineral, lean body mass and fat content as measured by dual energy X-ray absorptiometry: a longitudinal study. Calcif Tissue Int. 2000;66(2):97–99. doi:10.1007/s002230010020
  • Melton LJ 3rd, Atkinson EJ, Mk O, O’Fallon WM, Riggs BL. Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res. 2000;15(1):24–31. doi:10.1359/jbmr.2000.15.1.24
  • Khosla S, Atkinson EJ, Connor MKO, Fallon WMO, Riggs BL. Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos Int. 2000;1:592–599.
  • Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102. doi:10.1016/j.ajhg.2017.12.005
  • Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol. 2003;177(2):147–196. doi:10.1677/joe.0.1770147
  • Nelson DA, Pettifor JM, Barondess DA, Cody DD, Uusi-Rasi K, Beck TJ. Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res. 2004;19(4):560–565. doi:10.1359/JBMR.040104
  • Melton L, Chrischilles E, Cooper C, Lane A, Riggs B. How many women have osteoporosis? J Bone Miner Res. 1992;7(9). doi:10.1359/jbmr.2005.20.5.886
  • Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. N Engl J Med. 1995;332(12):767–774. doi:10.1056/NEJM199503233321202
  • Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol Metab. 1996;270(2):E320–E327. doi:10.1152/ajpendo.1996.270.2.E320
  • Runyan SM, Stadler DD, Bainbridge CN, Miller SC, Moyer-Mileur LJ. Familial resemblance of bone mineralization, calcium intake, and physical activity in early-adolescent daughters, their mothers, and maternal grandmothers. J Am Diet Assoc. 2003;103(10):1320–1325. doi:10.1016/S0002-8223(03)01075-7
  • Miller PD. Controversial issues in bone densitometry. In: Bilezikian J, Lawrence G, Martin T, editors. Principles of Bone Biology. 3rd ed. USA: Elsevier Inc; 1996:1895–1904.
  • Morseth B, Emaus N, Jørgensen L. Physical activity and bone: the importance of the various mechanical stimuli for bone mineral density. A review. Nor Epidemiol. 2011;20(2):173–178.
  • Nordstrom P, Nordstrom G, Lorentzon R. Correlation of bone density to strength and physical activity in young men with a low or moderate level of physical activity. Calcif Tissue Int. 1997;60(4):332–337.
  • Huuskonen J, Vaisanen SB, Kroger H, Jurvelin JS, Alhava E, Rauramaa R. Regular physical exercise and bone mineral density: A four-year controlled randomized trial in middle-aged men. The DNASCO study. Osteoporos Int. 2001;12(5):349–355. doi:10.1007/s001980170101
  • Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. Physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):1985–1996. doi:10.1249/01.MSS.0000142662.21767.58
  • Beshgetoor D, Nichols JF, Rego I, Effects of training and calcium intake on bone mineral density in female master cyclist, runners and non-athletes. Int J Sport Nutr Exerc Metab. 2000;(10):290–301. doi:10.1123/ijsnem.10.3.290
  • Boot A, de Ridder M, Pols H, Krenning EP, Keizer-Schrama SMPFDEM. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 2014;82(1):57–62.
  • Farsinejad-Marj M, Saneei P, Esmaillzadeh A. Dietary magnesium intake, bone mineral density and risk of fracture: a systematic review and meta-analysis. Osteoporos Int. 2016;27(4):1389–1399. doi:10.1007/s00198-015-3400-y
  • Jang H, Hong J, Han K, et al. Relationship between bone mineral density and alcohol intake: a nationwide health survey analysis of postmenopausal women. PLoS One. 2017;12(6)1–11.
  • Tucker KL, Jugdaohsingh R, Powell J, et al. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr. 2009;89(4):1188–1196. doi:10.3945/ajcn.2008.26765
  • de Jong WC, van Ruijven LJ, Brugman P, Langenbach GEJ. Variation of the mineral density in cortical bone may serve to keep strain amplitudes within a physiological range. Bone. 2013;55(2):391–399. doi:10.1016/j.bone.2013.04.026
  • Mirza F, Canalis E. Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173:131–151. doi:10.1530/EJE-15-0118
  • Wallace JM. Skeletal Hard Tissue Biomechanics. In: Burr B, Allen M, editors. Basic and Applied Bone Biology. London: Academic Press; 2013:115–130.
  • Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. 2006;35(SUPPL.2):27–31. doi:10.1093/ageing/afl081
  • Osipov B, Emami A, Christiansen B. Systemic bone loss after fracture. Clin Rev Bone Miner Metab. 2018;16(4):116–130.
  • Veitch S, Findlay S, Hamer A, Blumsohn A, Eastell R, Bm I. Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Int. 2006;17(3):364–372. doi:10.1007/s00198-005-2025-y
  • Ingle B, Hay S, Bottjer H, Eastell R. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int. 1999;10(5):399–407. doi:10.1007/s001980050246
  • Findlay S, Eastell R, Ingle B. Measurement of bone adjacent to tibial shaft fracture. Osteoporos Int. 2002;13(12):980–989. doi:10.1007/s001980200136
  • Ceroni D, Martin X, Delhumeau C, Rizzoli R, Kaelin A, Farpour-Lambert N. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture. J Bone Jt Surg (Am Vol). 2012;93(3):2018–16.
  • Akesson K, Ljunghall S, Jonsson B, et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res. 1995;10(11):1823–1829. doi:10.1002/jbmr.5650101127
  • Petersen M, Gehrchen P, Nielsen P, Lund B. Loss of bone mineral of the hip assessed by DEXA following tibial shaft fractures. Bone. 1997;20(5):491–495.
  • Mullender MG, Van Der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18(2):109–113. doi:10.1016/8756-3282(95)00444-0
  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):131–139. doi:10.2215/CJN.04151206
  • Bonnick SL. Bone Densitometry in Clinical Practice - Application and Interpretation. III ed. Denton (TX): Humana Press; 2010.
  • Reiser MF, Hricak H, Knauth M. Osteoporosis and Bone Densitometry Measurements. Berlin (Germany): Springer; 2013.
  • Macchiarelli R, Bondioli L. Linear densitometry and digital image processing of proximal femur radiographs: implications for archaeological and forensic anthropology. Am J Phys Anthropol. 1994;93(1):109–122. doi:10.1002/ajpa.1330930108
  • Cameron J, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science (80-). 1963;142:230–232. doi:10.1126/science.142.3589.230
  • Speller RD, Royle GJ, Horrocks JA. Instrumentation and techniques in bone density measurement. J Phys E Sci Instrum. 1989;22:202–214. doi:10.1088/0022-3735/22/4/001
  • Chugh T, Kumar A, Kumar R, Mehrotra P. Bone density and its importance in orthodontics. J Oral Biol Craniofacial Res. 2013;3(2):92–97. doi:10.1016/j.jobcr.2013.01.001
  • Panel E, Robert I, Roberts CC, et al. Appropriateness criteria osteoporosis and bone mineral density. J Am Coll Radiol. 2017;14:S189–S202. doi:10.1016/j.jacr.2017.02.018
  • Glüer CC. 30 years of DXA technology innovations. Bone. 2017;104:7–12. doi:10.1016/j.bone.2017.05.020
  • Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101–105. doi:10.1016/j.bone.2017.06.010
  • Morgan SL, Prater GL. Quality in dual-energy X-ray absorptiometry scans. Bone. 2017;104:13–28. doi:10.1016/j.bone.2017.01.033
  • Manske SL, MacDonald HM, Nishiyama KK, Boyd SK, McKay HA. Clinical tools to evaluate bone strength. Clin Rev Bone Miner Metab. 2010;8(3):122–134. doi:10.1007/s12018-009-9066-2
  • Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci. 2010;1192(1):57–65. doi:10.1111/j.1749-6632.2009.05348.x
  • Kraiger M, Martirosian P, Opriessnig P, et al. A fully automated trabecular bone structural analysis tool based on T2*-weighted magnetic resonance imaging. Comput Med Imaging Graph. 2012;36(2):85–94. doi:10.1016/j.compmedimag.2011.07.006
  • Pais R, Campean R, Simon SP, Bolosiu CR, Muntean L, Bolosiu HD. Accuracy of quantitative ultrasound parameters in the diagnosis of osteoporosis. Cent Eur J Med. 2010;5(4):478–485. doi:10.2478/s11536-009-0076-8
  • Glüer CC, Eastell R, Reid DM, et al. Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res. 2004;19(5):782–793. doi:10.1359/JBMR.040304
  • Ward RJ, Roberts CC, Bencardino JT, et al. ACR Appropriateness Criteria®Osteoporosis and bone mineral density. J Am Coll Radiol. 2017. doi:10.1016/j.jacr.2017.02.018
  • Fisher E, Austin D, Werner HM, Chuang YJ, Bersu E, Vorperian HK. Hyoid bone fusion and bone density across the lifespan: prediction of age and sex. Forensic Sci Med Pathol. 2016;12(2):146–157. doi:10.1007/s12024-016-9769-x
  • Meeusen RA, Christensen AM, Hefner JT. The use of femoral neck axis length to estimate sex and ancestry. J Forensic Sci. 2015;60(5):1300–1304. doi:10.1111/1556-4029.12820
  • Curate F, Albuquerque A, Ferreira I, Cunha E. Sex estimation with the total area of the proximal femur: a densitometric approach. Forensic Sci Int. 2017;275:110–116. doi:10.1016/j.forsciint.2017.02.035
  • Coelho O, Sc M, Navega D, Sc M, Ph D. DXAGE: a new method for age at death estimation based on femoral bone mineral density and artificial neural networks*. J Forensic Sci. 2018;63(2):497–503. doi:10.1111/1556-4029.13582
  • Bethard JD, Berger JM, Maiers J, Ross AH. Bone mineral density adult age estimation in forensic anthropology: a test of the DXAGE application. J Forensic Sci. 2018;3–6. doi:10.1111/1556-4029.13987
  • Wheatley BP. An evaluation of sex and body weight determination from the proximal femur using DXA technology and its potential for forensic anthropology. Forensic Sci Int. 2005;147:141–145. doi:10.1016/j.forsciint.2004.09.076
  • Nam H-S, Kweon -S-S, Choi J-S, et al. Racial/ethnic differences in bone mineral density among older women. Int J Exerc Sci. 2013:190–198. doi:10.1007/s00774-012-0402-0
  • Ross AH. Fatal starvation/malnutrition: medicolegal investigation from the Juvenile Skeleton. In: Ross AH, Abel, SM, editors. The Juvenile skeleton in Forensic Abuse Investigations. USA: Springer; 2011:151–165. doi:10.1007/978-1-61779-255-7
  • De Onís, M and Blössner M. WHO Global Database on Child Growth and Malnutrition. Geneva: World Health Organization, 1997.
  • Kranioti E. Forensic investigation of cranial injuries due to blunt force trauma: current best practice. Res Reports Forensic Med Sci. 2015;5:25–37. doi:10.2147/RRFMS.S70423
  • Roth S, Vappou J, Raul JS, Willinger R. Child head injury criteria investigation through numerical simulation of real world trauma. Comput Methods Programs. 2009;93(1):32–45. doi:10.1016/j.cmpb.2008.08.001
  • Tse KM, Bin TL, Yang B, Tan VBC, Lee HP. Effect of helmet liner systems and impact directions on severity of head injuries sustained in ballistic impacts: a finite element (FE) study. Med Biol Eng Comput. 2017;55(4):641–662. doi:10.1007/s11517-016-1536-3
  • Jiang B, Zhu F, Cao L, Presley BR, Shen M, Yang KH. Computational study of fracture characteristics in infant skulls using a simplified finite element model. J Forensic Sci. 2017;62(1):39–49. doi:10.1111/1556-4029.13241
  • Raul JS, Baumgartner D, Willinger R, Ludes B. Finite element modelling of human head injuries caused by a fall. Int J Legal Med. 2006;120(4):212–218. doi:10.1007/s00414-005-0018-1
  • Clarke BL, Ebeling PR, Jones JD, et al. Predictors of bone mineral density in aging healthy men varies by skeletal site. Calcifed Tissue Int. 2002:137–145. doi:10.1007/s00223
  • Manifold BM. Bone mineral density in children from anthropological and clinical sciences: a review. Gruyter Open. 2014;77(2):111–135. doi:10.2478/anre-2014-0011
  • Hale AR, Ross AH. The impact of freezing on bone mineral density: implications for forensic research. J Forensic Sci. 2017;62(2):399–404. doi:10.1111/1556-4029.13273
  • Wähnert D, Hoffmeier KL, Lehmann G, Fröber R, Hofmann GO, Mückley T. Temperature influence on DXA measurements: bone mineral density acquisition in frozen and thawed human femora. BMC Musculoskelet Disord. 2009;10:25. doi:10.1186/1471-2474-10-25