79
Views
0
CrossRef citations to date
0
Altmetric
Original Research

N-heterocyclic carbone: computational prediction of a divalent carbon (0) compound

Pages 7-11 | Published online: 14 Oct 2015

References

  • Tonner R, Frenking G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. Angew Chem Int Ed Engl. 2007;46:8695.
  • Dyker CA, Lavallo V, Donnadieu B, Bertrand G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew Chem Int Ed Engl. 2008;47:3206.
  • Alcarazo M, Lehmann CW, Anoop A, Thiel W, Fürstner A. Coordination chemistry at carbon. Nat Chem. 2009;1:295.
  • Alcarazo M. On the metallic nature of carbon in allenes and heterocumulenes. Dalton Trans. 2011;40(9):1839–1845.
  • Kaufhold O, Hahn FE. Carbodicarbenes: divalent carbon(0) compounds. Angew Chem Int Ed Engl. 2008;47:4057.
  • Ramirez F, Desai NB, Hansen B, McKelvie N. Hexaphenylcarbodiphosphorane, (C6H5)3PCP(C6H5)3. J Am Chem Soc. 1961;83:3539.
  • Hardy GE, Zink JI, Kaska WC, Baldwin JC. Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane. J Am Chem Soc. 1978;100:8001.
  • Tonner R, öxler F, Neumüller B, Petz W, Frenking G. Carbodiphosphoranes: the chemistry of divalent carbon(0). Angew Chem Int Ed Engl. 2006;45:8038.
  • Tonner R, Frenking G. Divalent carbon(0) chemistry, part 1: parent compounds. Chemistry. 2008;14:3260.
  • Klein S, Frenking G. Carbodiylides C(ECp*)2 (E=B-Tl): another class of theoretically predicted divalent carbon(0) compounds. Angew Chem Int Ed Engl. 2010;49:7106.
  • Tonner R, Frenking G. Divalent carbon(0) compounds. Pure Appl Chem. 2009;81:597.
  • Tonner R, Heydenrych G, Frenking G. First and second proton affinities of carbon bases. ChemPhysChem. 2008;9:1474.
  • Esterhuysen C, Frenking G. Distinguishing carbones from allenes by complexation to AuCl. Chemistry. 2011;17:9944.
  • Marrot S, Kato T, Gornitzka H, Baceiredo A. Cyclic carbodiphosphoranes: strongly nucleophilic sigma-donor ligands. Angew Chem Int Ed. 2006;45:2598.
  • Fernandez I, Dyker CA, DeHope A, Donnadieu B, Frenking G, Bertrand G. Exocyclic delocalization at the expense of aromaticity in 3,5-bis(pi-donor) substituted pyrazolium ions and corresponding cyclic bent allenes. J Am Chem Soc. 2009;131:11875.
  • Schmidbaur H; Schier A. Coordination chemistry at carbon: the patchwork family comprising (Ph3P)2C, (Ph3P)C(C2H4), and (C2H4)2C. Angew Chem Int Ed Engl. 2013;52:176.
  • Franz D, Irran E, Inoue S. Isolation of a three-coordinate boron cation with a boron-sulfur double bond. Angew Chem Int Ed. 2014;53:14264.
  • Kuhn N, Fawzi R, Steimann M, Wiethoff J. Derivate des Imidazols. XXIII. 2-Iminoimidazolin-Derivate des Magnesiums und Aluminiums. Z Anorg Allg Chem. 1997;623:554.
  • Kuhn N, Abram U, Maichle-Mössmer, C, Wiethoff J. Derivate des Imidazols. XXIV. Li12O2Cl2(ImN)8(THF)4] 8THF: Ein Peroxo-Komplex des Lithiums mit neuartiger Käfigstruktur. Z Anorg Allg Chem. 1997;623:1121.
  • Kuhn N, Grathwohl M, Steimann M, Henkel G. 1,2-Bis(1′,3′- dimethylimidazolin-2′-iminato)ethanein neuer Chelatligand [1]. Z Naturforsch B. 1998;53:997.
  • Kuhn N, Göhner M, Grathwohl M, Wiethoff J, Frenking G, Chen Y. 2-Iminoimidazoline – starke Stickstoffbasen als Koordinationspartner in der Anorganischen Chemie. Z Anorg Allg Chem. 2003;629:793.
  • Kinjo R, Donnadieu B, Bertrand G. Isolation of a carbene-stabilized phosphorus mononitride and its radical cation (PN+*). Angew Chem Int Ed Engl. 2010;49:5930.
  • Inoue S, Leszczynska K. An acyclic imino-substituted silylene: synthesis, isolation, and its facile conversion into a zwitterionic silaimine. Angew Chem Int Ed Engl. 2012;51:8589.
  • Dielmann F, Back O, Henry-Ellinger M, Jerabek P, Frenking G, Bertrand G. A crystalline singlet phosphinonitrene: a nitrogen atom-transfer agent. Science. 2012;337:1526.
  • Petrovic D, Glöge T, Bannenberg T, et al. Synthesis and reactivity of 16-electron pentamethylcyclopentadienyl–ruthenium(II) complexes with Bis(imidazolin-2-imine) ligands. Eur J Inorg Chem. 2007;2007:3472.
  • Petrovic D, Hill LMR, Jones PG, Tolman WB, Tamm M. Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. Dalton Trans. 2008;7:887–894.
  • Beer S, Brandhorst K, Hrib CG, et al. Experimental and theoretical investigations of catalytic alkyne cross-metathesis with imidazolin-2-iminato tungsten alkylidyne complexes. Organometallics. 2009;28:1534.
  • Glöge T, Petrovic D, Hrib CG, et al. Synthesis and structural characterization of an isomorphous series of Bis(imidazolin-2-imine) metal dichlorides containing the first row transition metals Mn, Fe, Co, Ni, Cu, and Zn. Z Anorg Allg Chem. 2010;636:2303.
  • Trambitas AG, Yang J, Melcher D, et al. Synthesis and structure of rare earth dicarbollide complexes with an imidazolin-2-iminato ligand featuring very short metal-nitrogen bonds. Organometallics. 2011;30:1122.
  • Shoken D, Sharma M, Botoshansky M, Tamm M, Eisen MS. Mono(imidazolin-2-iminato) titanium complexes for ethylene polymerization at low amounts of methylaluminoxane. J Am Chem Soc. 2013;135:12592.
  • Nomura K, Bahuleyan BK, Zhang S, et al. Synthesis and structural analysis of (imido)vanadium(V) dichloride complexes containing imidazolin-2-iminato- and imidazolidin-2-iminato ligands, and their use as catalyst precursors for ethylene (co)polymerization. Inorg Chem. 2014;53:607.
  • Karmel ISR, Botoshansky M, Tamm M, Eisen MS. Uranium(IV) imidazolin-2-iminato complexes: a new class of actinide complexes. Inorg Chem. 2014;53:694.
  • Wu X, Tamm M. Transition metal complexes supported by highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor ligands. Coord Chem Rev. 2014;260:116.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098.
  • Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter. 1986;33:8822.
  • Schäefer A, Horn H, Ahlrichs R. Fully optimized contracted gaussian basis sets for atoms Li to Kr. J Chem Phys. 1992;97:2571.
  • Schäefer A, Horn H, Ahlrichs R. Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys. 1994;100:5829.
  • Dolg M, Wedig U, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys. 1987;86:866.
  • Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys Rev. 1934;46:618.
  • Binkley JS, Pople JA. Møller–Plesset theory for atomic ground state energies. Int J Quantum Chem. 1975;9:229.
  • Tomasi J, Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev. 1994;94:2027.
  • Valiev M, Bylaska EJ, Govind N, et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun. 2010;181:1477.
  • Neese F. ORCA – An ab Initio, Density Functional and Semiempirical Program Package, Version 3.0.2. Bonn: University of Bonn; 2008.
  • Herrmann WA. N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed Engl. 2002;41:1290.
  • Becke AD. Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37:785.
  • Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200.
  • Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter. 1986;33:8822.
  • Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B Condens Matter. 1996;54:16533.
  • Schmidbaur H. The aurophilicity phenomenon: a decade of experimental findings, theoretical concepts and emerging applications. Gold Bull. 2000;33:3.
  • Guha AK, Sarmah S, Phukan AK. Effect of substituents at the heteroatom on the structure and ligating properties of heterocyclic carbene, silylene, germylene and abnormal carbene: a theoretical study. Dalton Trans. 2010;39:7374.