70
Views
0
CrossRef citations to date
0
Altmetric
Review

Current alternative therapies for treating drug-resistant Neisseria gonorrhoeae causing ophthalmia neonatorum

ORCID Icon
Received 12 Nov 2023, Accepted 03 Jan 2024, Published online: 21 Mar 2024

References

  • Gonococcal infections among neonates-STI treatment guidelines. https://www.cdc.gov/std/treatment-guidelines/gonorrhea-neonates.htm ( Accessed 21 Sep 2022).
  • Hu V, Caswell R, Last A, Burton M, Mabey D. Trachoma and inclusion conjunctivitis. Hunter's Trop. Med. Emerg. Infect. Dis. Elsevier 421–428 (2020).
  • Dolange V, Churchward CP, Christodoulides M, Snyder LAS. The growing threat of gonococcal blindness. Antibiot. Basel. Switz. 7(3), 59 (2018).
  • Ochoa KJC, Mendez MD. Ophthalmia Neonatorum. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022).
  • McAnena L, Knowles SJ, Curry A, Cassidy L. Prevalence of gonococcal conjunctivitis in adults and neonates. Eye (Lond) 29(7), 875–880 (2015).
  • Kapoor VS, Evans JR, Vedula SS. Interventions for preventing ophthalmia neonatorum. Cochrane Database Syst. Rev. 9(9), CD001862 (2020).
  • Fifer H, Saunders J, Soni S, Sadiq ST, FitzGerald M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 31(1), 4–15 (2020).
  • WHO guidelines for the treatment of Neisseria gonorrhoeae. https://www.who.int/publications-detail-redirect/9789241549691 ( Accessed 5 Aug 2022).
  • Soni S, Horner P, Rayment M et al. British Association for Sexual Health and HIV national guideline for the management of infection with Mycoplasma genitalium (2018). Int. J. STD AIDS 30(10), 938–950 (2019).
  • Liu Y, Feinen B, Russell M. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front. Microbiol. 2, 52 (2011).
  • Donham BP, Gibler WB. Images in emergency medicine. Gonococcal conjunctivitis. Ann. Emerg. Med. 52(1), 11–16 (2008).
  • Kawashima M, Kawakita T, Den S, Tomita M, Shimazaki J. Surgical management of corneal perforation secondary to gonococcal keratoconjunctivitis. Eye (Lond) 23, 339–344 (2009).
  • Ukachukwu FU, Rafiq A, Snyder LAS. Challenges in treating ophthalmia neonatorum. Expert Rev. Ophthalmol. 16(1), 19–32 (2021).
  • American Academy of Pediatrics. Prevention of neonatal ophthalmia. In: Red Book: 2012 Report of the Committee on Infectious Diseases (29th ed.). Pickering LK, Baker CJ, Kimberlin DW, Long SS ( Eds). Elk Grove Village, American Academy of Pediatrics, 880–882 (2012).
  • Suggs KS, Tito E, Muthukumarasamy N, Schauer M. Meningitis secondary to disseminated gonococcal infection. BMJ Case Rep. 14(9), e244895 (2021).
  • Lohani S, Nazir S, Tachamo N, Patel NJ. Disseminated gonococcal infection: an unusual presentation. Community Hosp. Intern. Med. Perspect. 6(3), 31841 (2016).
  • Rowley J, Vander Hoorn S, Korenromp E et al. Chlamydia, gonorrhea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 97(8), 548–562 (2019).
  • https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhea
  • Vaezzadeh K, Sepidarkish M, Mollalo A et al. Global prevalence of Neisseria gonorrhoeae infection in pregnant women: a systematic review and meta-analysis. Clin. Microbiol. Infect. 29(1), 22–31 (2023).
  • World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections (2021). http://www.who.int/publications/i/item/9789240027077 ( Accessed on December 22, 2022).
  • Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 18(3), 318–327 (2018).
  • Darling EK, McDonald H. A meta-analysis of the efficacy of ocular prophylactic agents used for the prevention of gonococcal and chlamydial ophthalmia neonatorum. J. Midwifery Womens Health 55(4), 319–327 (2010).
  • Jin J. Prevention of gonococcal eye infection in newborns. JAMA 321(4), 414 (2019).
  • Matejcek A, Goldman RD. Treatment and prevention of ophthalmia neonatorum. Can. Fam. Physician 59(11), 1187–1190 (2013).
  • US Preventive Services Task Force, Curry SJ, Krist AH, Owens DK et al. Ocular prophylaxis for gonococcal ophthalmia neonatorum: US Preventive Services Task Force Reaffirmation Recommendation Statement. JAMA 321(4), 394–398 (2019).
  • Mallika P, Asok T, Faisal H, Aziz S, Tan A, Intan G. Neonatal conjunctivitis – a review. Malays Fam Physician 3(2), 77–81 (2008).
  • Hammerschlag MR. Chlamydial and gonococcal infections in infants and children. Clin. Infect. Dis. 53(Suppl. 3), S99–S102 (2011).
  • Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines (2015). http://www.cdc.gov/std/tg2015 ( cited 2016 Dec 22).
  • Day M, Pitt R, Mody N et al. Detection of 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Euro Surveill. 27(46), 2200803 (2022).
  • Berçot B, Caméléna F, Mérimèche M et al. Ceftriaxone-resistant, multidrug-resistant Neisseria gonorrhoeae with a novel mosaic penA-237.001 gene, France, June 2022. Euro Surveill. 27(50), 2200899 (2022).
  • Bharara T, Bhalla P, Rawat D, Garg VK, Sardana K, Chakravarti A. Rising trend of antimicrobial resistance among Neisseria gonorrhoeae isolates and the emergence of N. gonorrhoeae isolate with decreased susceptibility to ceftriaxone. Indian J. Med. Microbiol. 33(1), 39–42 (2015).
  • Ross JDC, Brittain C, Cole M et al. Gentamicin compared with ceftriaxone for the treatment of gonorrhea (G-ToG): a randomised non-inferiority trial. Lancet 393(10190), 2511–2520 (2019).
  • Lin EY, Adamson PC, Klausner JD. Epidemiology, treatments, and vaccine development for antimicrobial-resistant Neisseria gonorrhoeae: current strategies and future directions. Drugs 81(10), 1153–1169 (2021).
  • de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Med. 13(11), e100218413 (2016).
  • O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance. (2016). https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf ( Accessed on 21 August 2023).
  • Unemo M, Nicholas RA. Emergence of multi drug resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7(12), 1401–1422 (2012).
  • WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed ( Accessed 21 Sep 2022).
  • Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multi-resistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med. Microbiol. Immunol. 209(2), 95–108 (2020).
  • Price R. O'Neill report on antimicrobial resistance: funding for antimicrobial specialists should be improved. Eur. J. Hosp. Pharm. 23(4), 245–247 (2016).
  • Eyre DW, Sanderson ND, Lord E et al. gonorrhea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 23(27), 1800323 (2018).
  • Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep. 36(4), 573–592 (2019).
  • Berenger BM, Demczuk W, Gratrix J, Pabbaraju K, Smyczek P, Martin I. Genetic Characterization and Enhanced Surveillance of Ceftriaxone-Resistant Neisseria gonorrhoeae Strain, Alberta, Canada, 2018. Emerg. Infect. Dis. 25(9), 1660–1667 (2019).
  • Wi T, Lahra MM, Ndowa F et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med. 14(7), e1002344 (2017).
  • Al-Maslamani M, Elmagboul EBI, Puthiyottil A et al. First characterisation of antimicrobial susceptibility and resistance of Neisseria gonorrhoeae isolates in Qatar, 2017–2020. PLOS ONE 17(3), e0264737 (2022).
  • Chung GT, Yoo JS, Oh HB et al. The complete genome sequence of Neisseria gonorrhoeae NCCP11945. J. Bacteriol. 190, 6035–6036 (2008).
  • Chen Y, Gong Y, Yang T et al. Antimicrobial resistance in Neisseria gonorrhoeae in China: a meta-analysis. BMC Infect Dis. 16, 108 (2016).
  • Agarwal J, Radera S, Suvirya S, Awasthi M. Antibiotic resistance in Neisseria gonorrhoeae isolated from a tertiary care center in North India. Indian J. Sex Transm. Dis. AIDS 40(2), 182–184 (2019).
  • Gjini E, Brito PH. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment. PLOS Comput. Biol. 12(4), e1004857 (2016).
  • Stalteri Mastrangelo R, Santesso N, Bognanni A et al. Consideration of antimicrobial resistance and contextual factors in infectious disease guidelines: a systematic survey. BMJ Open 11(7), e046097 (2021).
  • Lamar RV. Chemo-immunological studies on localized infections: second paper: Lysis of the pneumococcus and hemolysis by certain fatty acids and their alkali soaps. J. Exp. Med. 13(3), 380–386 (1911).
  • Jefferson A, Smith A, Fasinu PS, Thompson DK. Sexually Transmitted Neisseria gonorrhoeae Infections-Update on Drug Treatment and Vaccine Development. Medicines (Basel) 8(2), 11 (2021).
  • Anonye BO, Nweke V, Furner-Pardoe J et al. The safety profile of Bald's eyesalve for the treatment of bacterial infections. Sci. Rep. 10, 17513 (2020).
  • Harrison F, Roberts AE, Gabrilska R, Rumbaugh KP, Lee C, Diggle SP. A 1,000-year-old antimicrobial remedy with anti staphylococcal activity. mBio 6(4), e01129 (2015).
  • Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19(4), 1114 (2018).
  • Bergsson G, Steingrímsson O, Thormar H. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob. Agents Chemother. 43(11), 2790–2792 (1999).
  • Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 45(11), 3209–3212 (2001).
  • Churchward CP, Al-Kinani AA, Abdelkader H et al. Monocaprin eye drop formulation to combat antibiotic resistant gonococcal blindness. Sci. Rep. 10, 12010 (2020).
  • Churchward CP, Alany RG, Snyder LAS. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 44(5), 561–570 (2018).
  • Churchward CP, Calder A, Snyder LAS. Mutations in Neisseria gonorrhoeae grown in sub-lethal concentrations of monocaprin do not confer resistance. PLOS ONE 13(4), e0195453 (2018).
  • Russell MW, Jerse AE, Gray-Owen SD. Progress toward a gonococcal vaccine: the way forward. Front Immunol. 10, 2417 (2019).
  • Giri S, Markandeywar TS, Irfan Z, Manna S. Gellan gum and sodium alginate in-situ gel of monocaprin for effective corneal permeation. Food Hydrocolloids for Health 4, 100156 (2023).
  • Butt U, ElShaer A, Snyder LAS, Al-Kinani AA, Le Gresley A, Alany RG. Fatty acid based microemulsions to combat ophthalmia neonatorum caused by Neisseria gonorrhoeae and Staphylococcus aureus. Nanomaterials (Basel) 8(1), 51 (2018).
  • Seyfi R, Kahaki FA, Ebrahimi T et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int. J. Pept. Res. Ther. 26, 1451–1463 (2020).
  • Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 6, 194 (2016).
  • Xuan J, Feng W, Wang J et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 68, 100954 (2023).
  • Askari P, Yousefi M, Foadoddini M et al. Antimicrobial peptides as a promising therapeutic strategy for Neisseria infections. Curr. Microbiol. 79(4), 102 (2022).
  • Kiattiburut W, Zhi R, Lee SG et al. Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Hum. Reprod. 33(12), 2175–2183 (2018).
  • Cox DL, Sun Y, Liu H, Lehrer RI, Shafer WM. Susceptibility of Treponema pallidum to host-derived antimicrobial peptides. Peptides 24(11), 1741–1746 (2003).
  • Moncla B, Mietzner T, Hillier S. In vitro activity of cationic peptides against Neisseria gonorrhoeae and vaginal Lactobacillus species: the effect of divalent cations. Adv. Biosci. Biotechnol. 3(3), 249–255 (2012).
  • Shafer W, Qu X-D, Waring A, Lehrer R. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA 95(4), 1829–1833 (1998).
  • Nakamura T, Furunaka H, Miyata T et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem. 263(32), 16709–16713 (1988).
  • Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MA, Cooper MA. Structure-activity and- toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect Dis. 3(12), 917–926 (2017).
  • Qu X-D, Harwig S, Shafer WM, Lehrer RI. Protegrin structure and activity against Neisseria gonorrhoeae. Infect. Immun. 65(2), 636–639 (1997).
  • Steinberg DA, Hurst MA, Fujii CA et al. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 41(8), 1738–1742 (1997).
  • Lee SB, Li B, Jin S, Daniell H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 9(1), 100–115 (2011).
  • Arpornsuwan T, Buasakul B, Jaresitthikunchai J, Roytrakul S. Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae. Peptides 53, 315–320 (2014).
  • Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica Biophys Acta (BBA)-Biomembr. 1462(1–2), 11–28 (1999).
  • Sikora AE, Mills RH, Weber JV et al. Peptide inhibitors targeting the Neisseria gonorrhoeae pivotal anaerobic respiration factor AniA. Antimicrob. Agents Chemother. 61(8), e186–e217 (2017).
  • Mellies J, Jose J, Meyer T. The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol. Gen. Genet MGG. 256(5), 525–532 (1997).
  • Yenugu S, Narmadha G. The human male reproductive tract antimicrobial peptides of the HE2 family exhibit potent synergy with standard antibiotics. J. Pept. Sci. 16(7), 337–341 (2010).
  • Yenugu S, Hamil KG, French FS, Hall SH. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod. Biol. Endocrinol. 2(1), 61 (2004).
  • Liao M, Ruddock P, Rizvi A, Hall S, French F, Dillon J. Cationic peptide of the male reproductive tract, HE2a, displays antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. J. Antimicrob. Chemother. 56(5), 957–961 (2005).
  • Mota-Meira M, Lapointe G, Lacroix C, Lavoie MC. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents Chemother. 44(1), 24–29 (2000).
  • Mota-Meira M, Lacroix C, LaPointe G, Lavoie MC. Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett. 410(2–3), 275–279 (1997).
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Delivery Rev. 65, 1803–1815 (2013).
  • Baptista PV, McCusker MP, Carvalho A et al. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Front Microbiol. 9, 1441 (2018).
  • Lucío MI, Kyriazi ME, Hamilton J et al. Bactericidal Effect of 5-Mercapto-2-nitrobenzoic Acid-Coated Silver Nanoclusters against Multidrug-Resistant Neisseria gonorrhoeae. ACS Appl. Mater Interfaces 12(25), 27994–28003 (2020).
  • Yang TY, Tseng SP, Ho HC et al. In Vitro evaluation of tellurium-based AS101 compound against Neisseria gonorrhoeae infectivity. Microbiol. Spectr. 11(2), e0149622 (2023).
  • Alqahtani F, Aleanizy F, El Tahir E et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhea. Int. J. Nanomedicine 15, 7877–7887 (2020).
  • Li LH, Yen MY, Ho CC et al. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLOS ONE 8(5), e64794 (2013).
  • Ateia EE, Arman MM, Mohamed AT. A facile novel synthesis of AgCuO2 delafossite nanoparticles and evaluation of their antimicrobial activity. Sci. Rep. 13(1), 3141 (2023).
  • Cern A, Bavli Y, Hod A et al. Therapeutic potential of injectable nano-mupirocin liposomes for infections involving multidrug-resistant bacteria. Pharmaceutics 13(12), 2186 (2021).
  • Jackman JA, Yoon BK, Li D, Cho NJ. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules 21(3), 305 (2016).
  • Thormar H, Bergsson G, Gunnarsson E et al. Hydrogels containing monocaprin have potent microbicidal activities against sexually transmitted viruses and bacteria in vitro. Sex Transm. Infect. 75, 181–185 (1999).
  • Zhao Y, Su X. Antibacterial activity of 18beta-glycyrrhetinic acid against Neisseria gonorrhoeae in vitro. Biochem. Biophys Rep. 33, 101427 (2023).
  • Park S, Russo R, Westfall L et al. A novel oral GyrB/ParE dual binding inhibitor effective against multidrug-resistant Neisseria gonorrhoeae and other high-threat pathogens. Antimicrob. Agents Chemother. 66, e0041422 (2022).
  • Piekarowicz A, Majchrzak M, Kłyz A, Adamczyk-Popławska M. Analysis of the filamentous bacteriophage genomes integrated into Neisseria gonorrhoeae FA1090 chromosome. Polish J. Microbiol. 55(4), 251–260 (2006).
  • Piekarowicz A, Kłyz A, Majchrzak M, Adamczyk-Popławska M, Maugel TK, Stein DC. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 7, 66 (2007).
  • Piekarowicz A, Kłyż A, Majchrzak M et al. Neisseria gonorrhoeae filamentous phage NgoΦ6 is capable of infecting a variety of Gram-negative bacteria. J. Virol. 88(2), 1002–1010 (2014).
  • Adamczyk-Popławska M, Golec P, Piekarowicz A, Kwiatek A. The potential for bacteriophages and prophage elements in fighting and preventing the gonorrhea. Crit. Rev. Microbiol. 28, 1–16 (2023).
  • Cater K, Międzybrodzki R, Morozova V et al. Potential for phages in the treatment of bacterial sexually transmitted infections. Antibiotics 10(9), 1030 (2021).
  • Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16(4), 226–240 (2018).
  • Griffin PJ, Rieder SV. A study on the growth requirements of Neisseria gonorrhoeae and its clinical application. Yale J. Biol. Med. 29(6), 613–621 (1957).
  • Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85(6), 1629–1642 (2010).
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2), (2016).
  • Whiley DM, Jennison A, Pearson J, Lahra MM. Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis. 18(7), 717–718 (2018).
  • Williams MR, Stedtfeld RD, Waseem H et al. Implications of direct amplification for measuring antimicrobial resistance using point-of-care devices. Anal. Methods Adv. Methods Appl. 9(8), 1229–1241 (2017).
  • Unemo M, Lahra MM, Escher M et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017-18: a retrospective observational study. Lancet Microbe 2(11), e627–e636 (2021).
  • Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16(4), 226–240 (2018).
  • Aslam B, Khurshid M, Arshad MI et al. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 11, 771510 (2021).
  • Chanda W, Joseph TP, Guo XF et al. Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens. J. Zhejiang Univ. Sci. B 19(4), 253–262 (2018).
  • Morselli S, Valente S, Foschi C, Marangoni A, Pasquinelli G. Effect of different fatty acids on Neisseria gonorrhoeae viability. New Microbiol. 44(3), 164–172 (2021).
  • Schlievert PM, Peterson ML. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLOS One 7(7), e40350 (2012).
  • Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J. Lipid Res. 49(1), 4–11 (2008).
  • Thormar H, Hilmarsson H, Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp, and Escherichia coli. Appl. Environ. Microbiol. 72(1), 522–526 (2006).
  • Su B, Wang Y, Jian S et al. In vitro and in vivo antiviral activity of monolaurin against Seneca Valley virus. Front Vet. Sci. 10, 980187 (2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.