44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical research of an internal and external-corrugated tube-in-tube helical coil heat exchanger

, , &
Pages 3581-3600 | Received 11 Oct 2023, Accepted 12 Feb 2024, Published online: 11 Mar 2024
 

ABSTRACT

To effectively enhance the heat transfer of a tube-in-tube helical coil heat exchanger, a novel internal and external-corrugated tube-in-tube helical coil was proposed by improving both the inner and outer tubes. The impact of the corrugation layout on the annular region’s heat transfer property was simulated. The effect of periodically distributed corrugations on flow patterns and the local Nusselt on the inner tube wall was explored. Furthermore, by comparing the fluid’s velocity and temperature field contour in traditional helical coil and novel helical coil, the enhanced heat transfer mechanism was discovered. Finally, the effects of Re, dimensionless depth H, and dimensionless pitch S of corrugations on the annular region’s heat transfer, flow resistance and entropy generation were analyzed. The results showed that annular region’s heat transfer could be improved due to the periodically distributed corrugations. The local Nu distribution on the corrugated inner tube wall was similar to that of ordinary inner tube, while changed periodically due to the continuous influence of corrugations. The number of Nu and f increased by 53% ~72% and 40% ~120% with the dimensionless corrugation depth and dimensionless pitch being 0.15 and 1.5, respectively. The comprehensive heat transfer performance PEC reached 1.2 ~ 1.6, and cross-arranged inner and outer tube corrugations were more favorable for heat transfer than the corresponding arrangement, when Re = 6000, H3 structure has the highest St, Sf and Sgen, which are 0.934W/K, 0.379 W/K and 1.312W/K, respectively. Increasing H and decreasing S could enhance the Nu, f and entropy generation. The values of PEC decreased with increasing S, while with the increment of H, PEC increased and decreased, respectively when Re was in the range of (2000, 4000) and (4000, 6000). In the study range, changing H and S could increase Nu by 40.3%–97.3%, 31.7%–96.8%, and f by 11.7%–176.5%, 16.4%–180.9%, respectively. The final comprehensive heat transfer performance increased by 12.8%-65.9%. Finally, the prediction correlation formulas of Nu and f in NTTHC annular region with high correlation is proposed.

Nomenclature

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Notes on contributors

Jinxing Wu

Jinxing Wu holds a Ph.D from the East China University of Science and Technology, China. Currently, he is director of the Centre for Energy Saving Technology Research and of Thermal Energy and Power Engineering Department, Zhengzhou University. He is interested in the heat exchanger and burner to conserve energy, resource usage, and pollution reduction. He specializes in the optimization of structure.

Yadong Zhu

Yadong Zhu is a master’s student from Zhengzhou University, mainly engaged in the research of heat transfer enhancement of heat exchanger.

Can Gao

Can Gao is a master’s student from Zhengzhou University, mainly engaged in the research of heat transfer enhancement of heat exchanger

Dongyang Ding

Dongyang Ding is a master’s student from Zhengzhou University, mainly engaged in the research of heat transfer enhancement of heat exchanger.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.