50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical research of an internal and external-corrugated tube-in-tube helical coil heat exchanger

, , &
Pages 3581-3600 | Received 11 Oct 2023, Accepted 12 Feb 2024, Published online: 11 Mar 2024

References

  • Almitani, K. H., N. H. Abu-Hamdeh, A. Golmohammadzadeh, and M. Javaheran Yazd. 2021. The effect of various forms of the tube cross on the energetic and exergetic analysis of helical tube in tube heat exchangers of an AHU with energy recovery unit in heating mode: Injection of vapor/water particles. Journal of Thermal Analysis and Calorimetry 144 (6):2709–20. doi:10.1007/s10973-020-10546-9.
  • Alsabery, A. I., M. A. Sheremet, A. J. Chamkha, and I. Hashim. 2022. Forced convection of turbulent flow into the wavy parallel channel. Journal of Thermal Analysis and Calorimetry 147 (20):11183–94. doi:10.1007/s10973-022-11337-0.
  • Bashirnezhad, K., M. Ghavami, and A. A. A. A. Alrashed. 2017. Experimental investigations of nanofluids convective heat transfer in different flow regimes: A review. Journal of Molecular Liquids 244:309–21. doi:10.1016/j.molliq.2017.09.012.
  • Cao, Y., M. A. Abdous, S. G. Holagh, M. Shafiee, and M. Hashemian. 2021. Entropy generation and sensitivity analysis of R134a flow condensation inside a helically coiled tube-in-tube heat exchanger. International Journal of Refrigeration 130:104–16. doi:10.1016/j.ijrefrig.2021.06.007.
  • Cao, Y., H. Ayed, H. S. Dizaji, M. Hashemian, and M. Wae-Hayee. 2021. Entropic analysis of a double helical tube heat exchanger including circular depressions on both inner and outer tube. Case Studies in Thermal Engineering 26:101053. doi:10.1016/j.csite.2021.101053.
  • Chen, H. J., H. Moria, S. Y. Ahmed, K. S. Nisar, A. M. Mohamed, B. Heidarshenas, A. Arsalanloo, and M. M. Youshanlouei. 2021. Thermal/Exergy and economic efficiency analysis of circumferentially corrugated helical tube with constant wall temperature. Case Studies in Thermal Engineering 23:17. doi:10.1016/j.csite.2020.100803.
  • Chen, C. K., Y. T. Yang, and K. H. Chang. 2011. Entropy generation of radiation effect on laminar-mixed convection along a wavy surface. Heat and Mass Transfer 47 (4):385–95. doi:10.1007/s00231-010-0724-1.
  • Elattar, H. F., A. Fouda, S. A. Nada, H. A. Refaey, and A. Al-Zahrani. 2018. Thermal and hydraulic numerical study for a novel multi tubes in tube helically coiled heat exchangers: Effects of operating/geometric parameters. International Journal of Thermal Sciences 128:70–83. doi:10.1016/j.ijthermalsci.2018.02.020.
  • Fan, M. Y., Z. W. Bao, S. B. Liu, and W. Huang. 2022. Flow and heat transfer in the eccentric annulus of the helically coiled tube-in-tube heat exchanger used in an aero-engine. International Journal of Thermal Sciences 179:14. doi:10.1016/j.ijthermalsci.2022.107636.
  • Fouda, A., S. A. Nada, H. F. Elattar, H. A. Refaey, and A. S. Bin-Mahfouz. 2018. Thermal performance modeling of turbulent flow in multi tube in tube helically coiled heat exchangers. International Journal of Mechanical Sciences 135:621–38. doi:10.1016/j.ijmecsci.2017.12.015.
  • Huminic, G., and A. Huminic. 2011. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. International Journal of Heat and Mass Transfer 54 (19–20):4280–87. doi:10.1016/j.ijheatmasstransfer.2011.05.017.
  • Huminic, G., and A. Huminic. 2016. Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. International Communications in Heat and Mass Transfer 71:118–25. doi:10.1016/j.icheatmasstransfer.2015.12.031.
  • Hu, Q., X. Qu, W. Peng, and J. Wang. 2022. Experimental and numerical investigation of turbulent heat transfer enhancement of an intermediate heat exchanger using corrugated tubes. International Journal of Heat and Mass Transfer 185:122385. doi:10.1016/j.ijheatmasstransfer.2021.122385.
  • John, V. 2016. The Navier–Stokes Equations as Model for Incompressible Flows. Finite Element Methods for Incompressible Flow Problems 51. doi:10.1007/978-3-319-45750-5.
  • Kurnia, J. C., S. A. Ghoreishi-Madiseh, and A. P. Sasmito. 2020. Heat transfer and entropy generation in concentric/eccentric double-pipe helical heat exchangers. Heat Transfer Engineering 41 (18):1552–75. doi:10.1080/01457632.2019.1661666.
  • Kushwaha, N., T. C. Kumawat, K. D. P. Nigam, and V. Kumar. 2020. Heat transfer and fluid flow characteristics for newtonian and non-newtonian fluids in a tube-in-tube helical coil heat exchanger. Industrial & Engineering Chemistry Research 59 (9):3972–84. doi:10.1021/acs.iecr.9b07044.
  • Li, S., Y. Jiang, W. Cai, Q. Li, H. Zhang, and Y. Ren. 2018. The influence of structural parameters on heat transfer and pressure drop for hydrocarbon mixture refrigerant during condensation in enhanced spiral pipes. Applied Thermal Engineering 140:759–74. doi:10.1016/j.applthermaleng.2018.05.093.
  • Liu, Q., Y. Zhang, X. Zhang, Y. Cheng, J. Luo, J. Zheng, Y. Liu, and J. Lou. 2023. Numerical study on a coaxial geothermal exchanger equipped with a new inner tube: Entropy generation, thermodynamic irreversibility analysis and exergy efficiency performance evaluation. Journal of Cleaner Production 424:138803. doi:10.1016/j.jclepro.2023.138803.
  • Louw, W. I., and J. P. Meyer. 2005. Heat transfer during annular tube contact in a helically coiled tube-in-tube heat exchanger. Heat Transfer Engineering 26 (6):16–21. doi:10.1080/01457630590950835.
  • Luo, J., I. B. Mansir, K. Sharma, I. Mahariq, F. Jarad, M. M. Youshanlouei, H. Moria, F. Aldawi, and S. A. Reda. 2022. Profit and efficiency enhancement of a cylindrical solar collector by structural modification of helical tube. Case Studies in Thermal Engineering 34:101982. doi:10.1016/j.csite.2022.101982.
  • Makinde, O. D., and O. A. Bég. 2010. On inherent irreversibility in a reactive hydromagnetic channel flow. Journal of Thermal Science 19 (1):72–79. doi:10.1007/s11630-010-0072-y.
  • Ma, D., S. Ren, and T. Ma. 2023. Review on study of nanofluids heat transfer enhanced. Modern Chemical Research 38:7–9.
  • Mashoofi, N., S. M. Pesteei, A. Moosavi, and H. Sadighi Dizaji. 2017. Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator. Applied Thermal Engineering 111:1008–15. doi:10.1016/j.applthermaleng.2016.09.163.
  • Mozafari, M., M. A. Akhavan-Behabadi, H. Qobadi-Arfaee, and M. Fakoor-Pakdaman. 2015. Condensation and pressure drop characteristics of R600a in a helical tube-in-tube heat exchanger at different inclination angles. Applied Thermal Engineering 90:571–78. doi:10.1016/j.applthermaleng.2015.07.044.
  • Mukesh Kumar, P. C., and M. Chandrasekar. 2021. Heat transfer and friction factor analysis of MWCNT nanofluids in double helically coiled tube heat exchanger. Journal of Thermal Analysis and Calorimetry 144 (1):219–31. doi:10.1007/s10973-020-09444-x.
  • Nada, S. A., H. F. Elattar, A. Fouda, and H. A. Refaey. 2018. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil. Heat and Mass Transfer 54 (3):715–26. doi:10.1007/s00231-017-2163-8.
  • Nada, S. A., W. G. El Shaer, and A. S. Huzayyin. 2015. Performance of multi tubes in tube helically coiled as a compact heat exchanger. Heat and Mass Transfer 51 (7):973–82. doi:10.1007/s00231-014-1469-z.
  • Rogers, G. F. C., and Y. R. Mayhew. 1964. Heat transfer and pressure loss in helically coiled tubes with turbulent flow. International Journal of Heat and Mass Transfer 7 (11):1207–16. doi:10.1016/0017-9310(64)90062-6.
  • Ul Haq, R., F. A. Soomro, T. Mekkaoui, and Q. M. Al-Mdallal. 2018. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. International Journal of Heat and Mass Transfer 121:1168–78. doi:10.1016/j.ijheatmasstransfer.2018.01.063.
  • Valdes, M., J. G. Ardila, D. Colorado, and B. A. Escobedo-Trujillo. 2019. Computational model to evaluate the effect of passive techniques in tube-in-tube helical heat exchanger. Energies 12 (10):12. doi:10.3390/en12101912.
  • Vanaki, S. M., P. Ganesan, and H. A. Mohammed. 2016. Numerical study of convective heat transfer of nanofluids: A review. Renewable and Sustainable Energy Reviews 54:1212–39. doi:10.1016/j.rser.2015.10.042.
  • Wang, C., G. Li, F. Su, B. Gong, and J. Wu. 2022. Numerical study on thermodynamic performance of turbulent fluid flow in shell side of spiral casing heat exchanger. The Chinese Journal of Process Engineering 22:935–43.
  • Wu, J. X., S. G. Li, Y. Xu, Z. Li, J. Zhao, C. Xia, and Y. Chen. 2022. Development and performance research of a helical longitudinal-groove tube with secondary flow reinforcement for heat transfer. International Communications in Heat and Mass Transfer 137:13. doi:10.1016/j.icheatmasstransfer.2022.106265.
  • Wu, J. X., Z. Tang, Y. D. Zhu, X. Li, H. Wang, and Q. Shi. 2022. Two-phase secondary flow characteristics and heat transfer mechanism during boiling in a vertical helically coiled tube. International Communications in Heat and Mass Transfer 138:106398. doi:10.1016/j.icheatmasstransfer.2022.106398.
  • Xifeng, W., Z. Xiaoluan, I. Mahariq, M. Salem, M. Ghalandari, F. Ghadak, and M. Abedini. 2022. Performance optimization of the helical heat exchanger with turbulator. Frontiers in Energy Research 9. doi:10.3389/fenrg.2021.789316.
  • Zhang, X., H. Cui, and C. W. Liangrui Zhang. 2023. Research on heat transfer characteristics of eccentric rectangular spiral casing air cooler. Journal of Hebei University of Science and Technology 44:315–22.
  • Zhang, J., and S. Li. 2016. Numerical studies of an eccentric tube-in-tube helically coiled heat exchanger for 20MPa helium purification system. Cryogenics 6:62–67.
  • Zhang, C., D. Wang, S. Xiang, Y. Han, and X. Peng. 2017. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer 113:332–41. doi:10.1016/j.ijheatmasstransfer.2017.05.108.
  • Zheng, L., Y. Xie, and D. Zhang. 2018. Numerical investigation on heat transfer and flow characteristics in helically coiled mini-tubes equipped with dimples. International Journal of Heat and Mass Transfer 126:544–70. doi:10.1016/j.ijheatmasstransfer.2018.05.111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.