65
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Mechanistic study of electroacupuncture preconditioning in alleviating myocardial ischemia-reperfusion injury in rats: involvement of mTOR/ROS signaling pathway to inhibit ferroptosis

&
Received 21 Nov 2023, Accepted 20 Dec 2023, Published online: 06 Feb 2024
 

Abstract

Purpose

The objective of this study was to investigate the mechanism of electroacupuncture pretreatment in reducing myocardial ischemia-reperfusion injury in rats.

Materials and methods

The comparison of HR among the different groups did not yield statistically significant differences (p > 0.05). Additionally, the trend of HR change at different time points within each group was not statistically significant (p > 0.05). In contrast, the comparison of SBP among the different groups showed statistically significant differences (p < 0.05). Furthermore, the trend of SBP change at different time points within each group exhibited significant differences (p < 0.05).

Results

Compared to the Sham group, rats in the I/R group and EA control group showed a significant decrease in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and an increase in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05). Compared to EA control group, rats in the EA group exhibited a significant increase in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and a decrease in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05). Compared to the EA group, rats in the EA + RAP group showed a significant decrease in EF, FS, SOD, p-mTOR/mTOR, GPX4, and FTH1, and an increase in CK-MB, cTnI, LDH, iron, ROS, MDA, ACSL4, and NCOA4 (p < 0.05).

Conclusions

Electroacupuncture preconditioning confers protective effects against myocardial ischemia-reperfusion injury in rats. Its mechanism may involve the activation of the mTOR/ROS signaling pathway by electroacupuncture to inhibit ferroptosis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Talent Research Project of Gusu Health Talent Plan of Suzhou (No. GSWS2021047), Natural Science Foundation of Nanjing University of Chinese Medicine (No. XZR2021042), Youth Project of Suzhou Traditional Chinese Medicine Hospital(No.YQN2021002), and the Wuzhong District of Suzhou Science and Technology Plan Project in 2021(11).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.