74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of radiological health risk caused by the use of fly ash in cement and concrete production and its storage

&
Received 15 Sep 2023, Accepted 27 Dec 2023, Published online: 03 Jan 2024
 

ABSTRACT

As a result of firing pulverized coal in thermal power plants, enormous amounts of fly ash (FA) are produced as industrial waste. The release into the atmosphere and storage of this industrial waste remains one of the major environmental problems that threaten human health by contributing to air, water, and soil pollution. The recovery and reuse of FA in the construction industry is the only economic solution to the existing problem. In this study, the potential radiological risk caused by the usage of FA in concrete and cement production as a main component and its storage in landfill sites was evaluated for people and works by estimating radiological parameters (activity concentration and alpha index, annual effective doses, and the corresponding excess lifetime cancer risks) based on activity concentrations of terrestrial radionuclides in FA. Also, the radiological risk to the workers working in the FA landfill site was evaluated using the Residual Radioactivity Onsite 7.2 code. The average activity concentrations of terrestrial radionuclides in FA samples from the Tunçbilek lignite coal-fired thermal power plant at Kütahya province of Turkey were measured as 417, 156 and 454 Bq kg−1 for 226Ra, 232Th and 40K, respectively. When using up to 35% by mass of FA in cement and concrete, the average values of the radiological parameters revealed that they were within the recommended safety limits. However, code estimations showed that a regular worker in FA storage would be exposed to a total effective dose rate greater than 3 mSv y−1.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Author contribution

The measurements of the activity concentrations of the terrestrial radionuclides in fly ash samples were performed by Turhan. The dose assessment was done by Jamasali. The manuscript was written by Jamasali and Turhan. The final manuscript was read and approved by all authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 371.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.