77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of radiological health risk caused by the use of fly ash in cement and concrete production and its storage

&
Received 15 Sep 2023, Accepted 27 Dec 2023, Published online: 03 Jan 2024

References

  • MTA (General Directorate of Mineral Research and exploration). 2023. Web page: https://www.mta.gov.tr/v3.0/arastirmalar/komur-arama-arastirmalari.
  • Ademola J, Onyema U. 2014. Assessment of natural radionuclides in fly ash produced at Orji River thermal power station, Nigeria and the associated radiological impact. Nat Sci. 6(10):752–759. doi:10.4236/ns.2014.610075.
  • Ahmed IK, Khalaf HN, Ambrosino F, Mostafa MY. 2021. Fly ash radiological characterization from thermal power plants in Iraq. J Radioanal Nucl Chem. 329(3):1237–1245. doi:10.1007/s10967-021-07907-5.
  • Akgül ÇM, Yoncacı S. 2021. Türkiye kömür yakıtlı termik santral uçucu kül. Türkiye Çimento Sanayicileri Birliği Derneği. Ankara (in Turkish).
  • Altamemi RAA, Turhan Ş, Kurnaz A. 2021. Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey. Radiochim Acta. 109(12):935–942. doi:10.1515/ract-2021-1100.
  • Altıkulaç A, Turhan Ş, Kurnaz A, Gören E, Duran C, Hançerlioğulları A, Uğur FA. 2022. Assessment of the enrichment of heavy metals in coal and its combustion residues. ACS Omega. 7(24):21239–21245. doi:10.1021/acsomega.2c02308.
  • Amran M, Fediuk R, Murali G, Avudaiappan S, Ozbakkaloglu T, Vatin N, Karelina M, Klyuev S, Gholampour A. 2021. Fly ash-based eco-efficient concretes: a comprehensive review of the short-term properties. Materials. 14(4264):1–41. doi:10.3390/ma14154264.
  • Apostolova D, Kostova I, Bechtel A, Stefanova M. 2021. PAHs in feed coals and fly ashes from coal-fired thermal power plants in Bulgaria. Int J Coal Geol. 243:1–12. doi: 10.1016/j.coal.2021.103782.
  • Argiz C, Menéndez E, Moragues A, Sanjuán MÁ. 2015. Fly ash characteristics of Spanish coal-fired power plants. Afinidad. 72:269–277.
  • Avinash R, Kajal KM, Pammy K. 2020. Impact of coal-fired thermal power plant on the drinking water quality of Anpara, Sonbhadra, Uttar Pradesh, India. Groundw Sustain Dev. 11:1–9. doi: 10.1016/j.gsd.2020.100395.
  • Aytekin H, Baldık R. 2012. Radioactivity of coals and ashes from Çatalağzi coal-fired power plant in Turkey. Radiat Prot Dosim. 149(2):211–215. doi:10.1093/rpd/ncr225.
  • Baba A. 2002. Assessment of radioactive contaminants in by-products from Yatagan (Mugla, Turkey) coal-fired power plant. Env Geol. 41(8):916–921. doi:10.1007/s00254-001-0469-8.
  • Bilici H, Türköz M, Savaş H. 2022. Performance of fly ash provided from three different thermal plants on the compaction and strength properties of fine-grain soil. J ESOGU Engin Arch Fac. 30(3):379–388. in Turkish. doi:10.31796/ogummf.1132604.
  • Cevik U, Damla N, Koz B, Kaya S. 2008. Radiological characterization around the Afsin-Elbistan coal-fired power plant in Turkey. Energy Fuel. 22(1):428–432. doi:10.1021/ef700374u.
  • Cevik U, Damla N, Nezir S. 2007. Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel. 86(16):2509–2513. doi:10.1016/j.fuel.2007.02.013.
  • Charro E, Peña V. 2013. Environmental impact of natural radionuclides from a coal-fired power plant in Spain. Radiat Protec Dosim. 153(4):485–495. doi:10.1093/rpd/ncs126.
  • Córdoba P. 2019. Emissions of inorganic trace pollutants from coal power generation. Air pollution - monitoring, quantification and removal of gases and particles. IntechOpen, 2019 doi: 10.5772/intechopen.79918.
  • Csordás A, Shahrokhi A, Tóth G, Kovács T. 2022. Radiological atmospheric risk modelling of NORM repositories in Hungary. Atmosphere. 13(1305):1–19. doi:10.3390/atmos13081305.
  • Damla N, Cevik U, Kara A. 2012. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region. Kerntechnik. 77(5):395–400. doi:10.3139/124.110227.
  • de Los Reyes AM M, Suárez-Navarro JA, MdM A, Gascó C, Sobrados I, Puertas F. 2021. New approach for the determination of radiological parameters on hardened cement pastes with coal fly ash. Mater. 14(3):1–17. doi:10.3390/ma14030475.
  • EC (European Commission). 1999. Radiation protection 112- radiological protection principles concerning the natural radioactivity of building materials. Directorate- General Environ Nuclear Safety Civil Protect.
  • Ergüler GK, Bayındır FM, Dağlıyar A. 2021. Investigation of the effect of fly ash released from Kütahya thermal power plants by using remote sensing methods. Bull Min Res Exp. 166:1–18. doi: 10.19111/bulletinofmre.946782.
  • Fidanchevski E, Angjusheva B, Jovanov V, Murtanovski P, Vladiceska L, Aluloska NS, Nikolic JK, Ipavec A, Šter K, Mrak M, et al. 2021. Technical and radiological characterisation of fly ash and bottom ash from thermal power plant. J Radioanal Nucl Chem. 330(3):685–694. doi:10.1007/s10967-021-07980-w.
  • Flues M, Camargo MC, PSC S, BP M. 2006. Radioactivity of coal and ashes from figueira coal power plant in Brazil. J Radioanal Nucl Chem. 270(3):597–602. doi:10.1007/s10967-006-0467-0.
  • Fungaro DA, Fungaro DA, Silva PS, Campello F, Miranda CS, Izidoro J. 2019. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from figueira thermoelectric power plant. Braz J Radiat Sci. 7(2A):1–21. doi:10.15392/bjrs.v7i2A.606.
  • Gezer F, Ş T, Ufuktepe Y. 2021. Radiometric analysis of micas used in many industries and evaluation of radiological hazards. Radiochim Acta. 109(8):643–651. doi:10.1515/ract-2021-1019.
  • Ghazali N, Muthusamy K, Ahmad SW. 2019. Utilization of fly ash in construction. IOP Conf Ser: Mater Sci Eng. 601(1):012023–9. doi:10.1088/1757-899X/601/1/012023.
  • Gören E, Turhan Ş, Kurnaz A, Garad AMK, Duran C, Uğur FA, Yeğingil Z. 2017. Environ eval natural radioactivity in soil near a lignite-burning power plant in Turkey. Appl Radiat Isot. 129:13–18. doi: 10.1016/j.apradiso.2017.07.059.
  • Gür F, Yaprak G. 2010. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity. J Environ Sci Health A Tox Hazard Subst Environ Eng. 45(14):1900–1908. doi:10.1080/10934529.2010.520608.
  • Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Techato K, Khan R, Majlis ABK, Phoungthong K. 2019. Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazards. Environ Monit Assess. 191(1):1–20. doi:10.1007/s10661-018-7160-y.
  • Hasani F, Shala F, Xhixha G, Xhixha MK, Hodolli G, Kadiri S, Bylyku E, Cfarku F. 2014. Naturally occurring radioactive materials (NORMs) generated from lignite–fired power plants in Kosovo. J Environ Radioact. 138:156–161. doi: 10.1016/j.jenvrad.2014.08.015.
  • Hassan H. 2023. Radiological impact assessment of TE-NORM generating from combustion of fuel in thermal power plant using RESRAD model. Arab J Nucl Sci Appl. 56(1):126–132. doi:10.21608/ajnsa.2022.142549.1596.
  • ICRP 60. 1990. Recommendations of the International Commission on radiological protection. Publication. 212:No.1–3.
  • Jalil S, Rashid M. 2015. Analysis of natural radioactivity in coal and ashes from a coal fired power plant. Chem Eng Trans. 45:1549–1554.
  • Janković MM, Todorović DJ, Nikolić JD. 2011. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia. J Min Metall B Metall. 47(2):149–155. doi:10.2298/JMMB110208008J.
  • Kocsis E, Tóth-Bodrogi E, Peka A, Adelikhah M, Kovács T. 2021. Radiological impact assessment of different building material additives. J Radioanal Nucl Chem. 330(3):1517–1526. doi:10.1007/s10967-021-07897-4.
  • Kurnaz A, Turhan Ş, Metin O, Altıkulaç A, Duran C. 2022. Evaluation of terrestrial radionuclide levels and concomitant radiological risks of bentonites used in many industries. Int J Environ Health Res. 33(12):1706–1715. doi:10.1080/09603123.2022.2120190.
  • Łata AE, Danielowska DS. 2020. 234U, 238U, 226Ra, 228Ra and 40K concentrations in feed coal and its combustion products during technological processes in the Upper Silesian Industrial Region, Poland. Environ Pollut. 267:1–11. doi: 10.1016/j.envpol.2020.115462.
  • Loan TTH, Ba VN, Thien BN. 2022. Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex. Vietnam Nucl Eng Technol. 54(4):1431–1438. doi:10.1016/j.net.2021.10.019.
  • Lu X, Li LY, Wang F, Wang L, Zhang X. 2012. Radiological hazards of coal and ash samples collected from Xi’an coal-fired power plants of China. Environ Earth Sci. 66(7):1925–1932. doi:10.1007/s12665-011-1417-x.
  • Mehra R, Kaur S, Prakash R. 2020. Optimization of fly ash content in cement and assessment of radiological risk. Indoor Built Environ. 29(2):286–292. doi:10.1177/1420326X19852983.
  • MENR (Ministry of Energy and Natural Resources), 2023. Web page: https://enerji.gov.tr/infobank-energy-electricity
  • Mishra M, Sahu SK, Mangaraj P, Beig G. 2023. Assessment of hazardous radionuclide emission due to fly ash from fossil fuel combustion in industrial activities in India and its impact on public. J Environ Manage. 328:1–10. doi: 10.1016/j.jenvman.2022.116908.
  • Ozden B, Erkan G, Taavi V, Horvath M, Kiisk M, Kovacs T. 2018. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. J Environ Radioact. 188:100–107. doi: 10.1016/j.jenvrad.2017.09.016.
  • Özkul C. 2016. Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey). Environ Monit Assess. 188(5):1–12. doi:10.1007/s10661-016-5295-2.
  • Papastefanou C. 2010. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. J Environ Radioact. 101(3):191–200. doi:10.1016/j.jenvrad.2009.11.006.
  • Righi S, Bruzzi L. 2006. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact. 88(2):158–170. doi:10.1016/j.jenvrad.2006.01.009.
  • Sall M, Dieye G, Traore A, Gueye PM, Diouf S, Wade AC, Diop D. 2022. Technological and environmental behavior of coal fly ash in lime-based materials. Geomaterials. 12(2):15–29. doi:10.4236/gm.2022.122002.
  • Sas Z, Sha W, Soutsos M, Doherty R, Bondar D, Gijbels K, Schroeyers W. 2019. Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Sci Total Environ. 659:1496–1504. doi: 10.1016/j.scitotenv.2019.01.006.
  • Shen Z, Zhang Q, Cheng W, Chen Q. 2019. Radioactivity of five typical general industrial solid wastes and its influence in solid waste recycling. Minerals. 9(3):1–14. doi:10.3390/min9030168.
  • Smetsers RCGM, Tomas JM. 2019. A practical approach to limit the radiation dose from building materials applied in dwellings, in compliance with the euratom basic safety standards. J Environ Radioact. 196:40–49. doi: 10.1016/j.jenvrad.2018.10.007.
  • Souffit GD, Saïdou S, Modibo OB, Lepoire D, Tokonami S. 2022. Risk assessment of exposure to natural radiation in soil using RESRAD-ONSITE and RESRAD-BIOTA in the cobalt-nickel bearing areas of Lomié in Eastern Cameroon. Radiation. 2(2):177–192. doi:10.3390/radiation2020013.
  • Temuujin J, Surenjav E, Ruescher CH, Vahlbruch J. 2019. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere. 216:866–882. doi: 10.1016/j.chemosphere.2018.10.112.
  • Terzić A, Pavlović L, Miličić L. 2013. Evaluation of lignite fly ash for utilization as component in construction materials. Int J Coal Prep Util. 33(4):159–180. doi:10.1080/19392699.2013.776960.
  • TS EN 197-1. 2002. Çimento-Bölüm 1: Genel Çimentolar-Bileşim,Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, Ankara 2002. in Turkish
  • TUİK (Turkish Statistical Institute), 2023, Web page: https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2020-37198
  • Turhan Ş, Arıkan İH, Köse A, Varinlioğlu A. 2011. Assessment of the radiological impacts of utilizing coal combustion fly ash as main constituent in the production of cement. Environ Monit Assess. 177(1–4):555–561. doi:10.1007/s10661-010-1656-4.
  • Turhan Ş, Garad AMK, Hançerlioğulları A, Kurnaz A, Gören E, Duran C, Karataşlı M, Altıkulaç A, Savacı G, Aydın A. 2020. Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey. Environ Earth Sci. 79(6):1–15. doi:10.1007/s12665-020-8864-1.
  • Turhan Ş, Gören E, Garad AMK, Altıkulaç A, Kurnaz A, Duran C, Hançerlioğulları A, Altunal V, Güçkan V, Özdemir A. 2018. Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey. Radiochim Acta. 106(7):611–621. doi:10.1515/ract-2017-2863.
  • Turhan Ş, Kurnaz A, Karataşlı M. 2022. Evaluation of natural radioactivity levels and potential radiological hazards of common building materials utilized in Mediterranean region, Turkey. Environ Sci Pollut Res. 29(7):10575–10584. doi:10.1007/s11356-021-16505-7.
  • Turhan Ş, Parmaksız A, Köse A, Yüksel A, İ H A, Yücel B. 2010. Radiological characteristics of pulverized fly ashes produced in Turkish coal-burning thermal power plants. Fuel. 89(12):3892–3900. doi:10.1016/j.fuel.2010.06.045.
  • Turhan Ş, Varinlioğlu A. 2012. Radioactivity measurement of primordial radionuclides in and dose evaluation from marble and glazed tiles used as covering building materials in Turkey. Radiat Prot Dosim. 151(3):546–555. doi:10.1093/rpd/ncs041.
  • Türker P, Erdoğan B, Katnaş F, Yeğinobalı A. 2009. Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. TÇMB/AR-GE/Y03.03. TÇMB/AR-GE Enstitüsü. Ankara (in Turkish).
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and effects of ionizing radiation. New York, USA: United Nations Publication.
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2008. Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of Atomic radiation. New York, USA: United Nations Publication. 2010.
  • Verma SK, Masto RE, Gautam S, Choudhury DP, Ram LC, Maiti SK, Maity S. 2015. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel. 162:138–147. doi: 10.1016/j.fuel.2015.09.005.
  • Vig N, Mor S, Ravindra K. 2023. The multiple value characteristics of fly ash from Indian coal thermal power plants: a review. Environ Monit Assess. 195(33):1–21. doi:10.1007/s10661-022-10473-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.