56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable Q-factor wavelet transform based identification of diabetic patients using ECG signals

, , &
Received 09 Aug 2023, Accepted 08 Apr 2024, Published online: 18 Apr 2024
 

Abstract

Diabetes is a chronic health condition that is characterized by increased levels of glucose (sugar) in the blood. It can have harmful effects on different parts of the body, such as the retina of the eyes, skin, nervous system, kidneys, and heart. Diabetes affects the structure of electrocardiogram (ECG) impulses by causing cardiovascular autonomic dysfunction. Multi-resolution analysis of the input ECG signal is utilized in this paper to develop a machine learning-based system for the automated detection of diabetic patients. In the first step, the input ECG signal is decomposed into sub-bands utilizing the tunable Q-factor wavelet transform (TQWT) technique. In the second step, four entropy-based characteristics are evaluated from each SB and elected using the K-W test method. To develop an automatic diabetes detection system, selected features are given as input with 10-fold validation to a SVM classifier using various kernel functions. The 3rd sub-band of TQWT with the Coarse Gaussian kernel function kernel of the SVM classifier yields a classification accuracy of 91.5%. In the same dataset, the comparative analysis demonstrates that the proposed method outperforms other existing methods.

Disclosure statement

There is no conflict of interest.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.