58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable Q-factor wavelet transform based identification of diabetic patients using ECG signals

, , &
Received 09 Aug 2023, Accepted 08 Apr 2024, Published online: 18 Apr 2024

References

  • A. D. Association. 2010. Diagnosis and classification of diabetes mellitus. Diabetes Care. 33(Suppl_1):S62–S69.
  • Acharya UR, Faust O, Kadri NA, Suri JS, Yu W. 2013. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput Biol Med. 43(10):1523–1529. doi: 10.1016/j.compbiomed.2013.05.024.
  • Acharya UR, Faust O, Sree SV, Ghista DN, Dua S, Joseph P, Ahamed VT, Janarthanan N, Tamura T. 2013. An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes. Comput Methods Biomech Biomed Eng. 16(2):222–234. doi: 10.1080/10255842.2011.616945.
  • Acharya UR, Vidya KS, Ghista DN, Lim WJE, Molinari F, Sankaranarayanan M. 2015. Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowledge-Based Syst. 81:56–64. doi: 10.1016/j.knosys.2015.02.005.
  • Al-Hazimi A, Al-Ama N, Syiamic A, Qosti R, Abdel-Galil K. 2002. Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Ann Saudi Med. 22(5–6):400–403. doi: 10.5144/0256-4947.2002.400.
  • Atkinson MA, Eisenbarth GS, Michels AW. 2014. Type 1 diabetes. Lancet. 383(9911):69–82. doi: 10.1016/S0140-6736(13)60591-7.
  • Carrizales-Sepúlveda EF, Vera-Pineda R, Jiménez-Castillo RA, Violante-Cumpa JR, Flores-Ramírez R, Ordaz-Farías A. 2021. The heart in diabetic ketoacidosis: a narrative review focusing on the acute cardiac effects and electrocardiographic abnormalities. Am J Med Sci. 361(6):690–701. doi: 10.1016/j.amjms.2020.11.030.
  • Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn. 20(3):273–297. doi: 10.1007/BF00994018.
  • Faust O, Acharya UR, Molinari F, Chattopadhyay S, Tamura T. 2012. Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed Signal Process Control. 7(3):295–302. doi: 10.1016/j.bspc.2011.06.002.
  • Finet P, Gibaud B, Dameron O, Jeannès RLB. 2018. Interoperable infrastructure and implementation of a health data model for remote monitoring of chronic diseases with comorbidities. IRBM. 39(3):151–159. doi: 10.1016/j.irbm.2018.03.003.
  • Gupta K, Bajaj V, Ansari IA. 2023. Integrated s-transform-based learning system for detection of arrhythmic fetus. IEEE Trans Instrum Meas. 72:1–8. doi: 10.1109/TIM.2023.3271739.
  • Gupta K, Bajaj V. 2022. A robust framework for automated screening of diabetic patient using ecg signals. IEEE Sensors J. 22(24):24222–24229. doi: 10.1109/JSEN.2022.3219554.
  • Gupta V, Mittal M, Mittal V. 2022. A novel frwt based arrhythmia detection in ECG signal using ywara and pca. Wireless Pers Commun. 124(2):1229–1246. doi: 10.1007/s11277-021-09403-1.
  • Howlader KC, Satu MS, Awal MA, Islam MR, Islam SMS, Quinn JM, Moni MA. 2022. Machine learning models for classification and identification of significant attributes to detect type 2 diabetes. Health Inf Sci Syst. 10(1):2. doi: 10.1007/s13755-021-00168-2.
  • Jain A, Verma A, Verma AK. 2023. Non-invasive and automatic identification of diabetes using ECG signals, Special Issue on Machine Intelligence and Deep Learning in Healthcare Decision Making of. IJEER. 11(2):418–425. doi: 10.37391/ijeer.110223.
  • Jian LW, Lim T-C. 2013. Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals. J Med Imaging Hlth Inform. 3(3):440–447. doi: 10.1166/jmihi.2013.1178.
  • Khan M, Singh BK, Nirala N. 2023. Expert diagnostic system for detection of hypertension and diabetes mellitus using discrete wavelet decomposition of photoplethysmogram signal and machine learning technique. Med Novel Technol Dev. 19:100251. doi: 10.1016/j.medntd.2023.100251.
  • Lee S, Park D. 2022. Abnormal beat detection from unreconstructed compressed signals based on linear approximation in ecg signals suitable for embedded IOT devices. J Ambient Intell Human Comput. 13(10):4705–4717. doi: 10.1007/s12652-021-03578-y.
  • Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, Shi B, Sun H, Ba J, Chen B, et al. 2020. Prevalence of diabetes recorded in mainland china using 2018 diagnostic criteria from the american diabetes association: national cross sectional study. BMJ. 369:m997. doi: 10.1136/bmj.m997.
  • Lin C-S, Lee Y-T, Fang W-H, Lou Y-S, Kuo F-C, Lee C-C, Lin C. 2021. Deep learning algorithm for management of diabetes mellitus via electrocardiogram-based glycated hemoglobin (ecg-hba1c): a retrospective cohort study. J Pers Med. 11(8):725. doi: 10.3390/jpm11080725.
  • Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. 2020. Classification and prediction of diabetes disease using machine learning paradigm. Health Inf Sci Syst. 8(1):7. doi: 10.1007/s13755-019-0095-z.
  • McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. 2019. Gestational diabetes mellitus. Nat Rev Dis Primers. 5(1):47. doi: 10.1038/s41572-019-0098-8.
  • Mercaldo F, Nardone V, Santone A. 2017. Diabetes mellitus affected patients classification and diagnosis through machine learning techniques. Procedia Comput Sci. 112:2519–2528. doi: 10.1016/j.procs.2017.08.193.
  • Oguntibeju OO. 2019. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 11(3):45.
  • Olokoba AB, Obateru OA, Olokoba LB. 2012. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 27(4):269–273. doi: 10.5001/omj.2012.68.
  • Ostertagová E, Ostertag O, Kováč J. 2014. Methodology and application of the kruskal-wallis test, in. AMM. 611:115–120. doi: 10.4028/www.scientific.net/AMM.611.115.
  • Shakeel PM, Baskar S, Dhulipala VS, Jaber MM. 2018. Cloud based framework for diagnosis of diabetes mellitus using k-means clustering. Health Inf Sci Syst. 6(1):16. doi: 10.1007/s13755-018-0054-0.
  • Sharma M, Singh G, Singh R. 2017. Stark assessment of lifestyle based human disorders using data mining based learning techniques. IRBM. 38(6):305–324. doi: 10.1016/j.irbm.2017.09.002.
  • Shashikant R, Chaskar U, Phadke L, Patil C. 2021. Gaussian process-based kernel as a diagnostic model for prediction of type 2 diabetes mellitus risk using non-linear heart rate variability features. Biomed Eng Lett. 11(3):273–286. doi: 10.1007/s13534-021-00196-7.
  • Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC, et al. 2022. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:109119. doi: 10.1016/j.diabres.2021.109119.
  • Swapna G, Kp S, Vinayakumar R. 2018. Automated detection of diabetes using cnn and cnn-lstm network and heart rate signals. Procedia Comput Sci. 132:1253–1262. doi: 10.1016/j.procs.2018.05.041.
  • Swapna G, Rajendra Acharya U, VinithaSree S, Suri JS. 2013. Automated detection of diabetes using higher order spectral features extracted from heart rate signals. IDA. 17(2):309–326. doi: 10.3233/IDA-130580.
  • Swapna G, Soman K, Vinayakumar R. 2020. Diabetes detection using ecg signals: an overview, Deep Learning Techniques for Biomedical and Health Informatics, 299–327.
  • Swapna G, Soman K. 2021. Diabetes detection and sensor-based continuous glucose monitoring—a deep learning approach. In: Chakraborty, C., Ghosh, U., Ravi, V., Shelke, Y. (eds) Efficient Data Handling for Massive Internet of Medical Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-66633-0_11
  • Trunkvalterova Z, Javorka M, Tonhajzerova I, Javorkova J, Lazarova Z, Javorka K, Baumert M. 2008. Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis. Physiol Meas. 29(7):817–828. doi: 10.1088/0967-3334/29/7/010.
  • Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR. 2019. Automated detection of diabetic subject using pre-trained 2d-cnn models with frequency spectrum images extracted from heart rate signals. Comput Biol Med. 113:103387. doi: 10.1016/j.compbiomed.2019.103387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.