641
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Properties of condensed matter from fundamental physical constants

Pages 469-512 | Received 28 Sep 2022, Accepted 28 Feb 2023, Published online: 29 Mar 2023

References

  • J.D. Barrow, The Constants of Nature, Pantheon Books, New York, 2003.
  • J.D. Barrow and F.J. Tipler, The Anthropic Cosmological Principle, Oxford University Press, New York , 2009.
  • B. Carr, Hierarchy of fine-structure constants, in Fine Tuning in the Physical Universe, D. Sloan, R.A. Batista, M.T. Hicks, R. Davies, eds., Cambridge University Press, Cambridge, 2022, pp. 20–32.
  • B.J. Carr and M.J. Rees, The anthropic principle and the structure of the physical world, Nature 278 (1979), pp. 605–612.
  • B. Carr, Universe Or Multiverse? Cambridge University Press, New York, 2009.
  • D. Sloan, R.A. Batista, M.T. Hicks and R. Davies, Fine Tuning in the Physical Universe, Cambridge University Press, Cambridge, 2022.
  • R.N. Cahn, The eighteen arbitrary parameters of the standard model in your everyday life, Rev. Mod. Phys. 68 (1996), pp. 951–959.
  • C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000), pp. 1149–1161.
  • F.C. Adams, The degree of fine-tuning in our universe – and others, Phys. Rep. 807 (2019), pp. 1–111.
  • J.-P. Uzan, The fundamental constants and their variation: Observational and theoretical status, Rev. Mod. Phys. 75 (2003), pp. 403–455.
  • J.D. Barrow and J.K. Webb, Inconstant constants, Sci. Amer. 16 (2006), p. 64.
  • S. Weinberg, Overview of theoretical prospects for understanding the values of fundamental constants, Phil. Trans. R. Soc. Lond. A 310 (1983), pp. 249–252.
  • C.J. Hogan, Quarks, electrons and atoms in closely related universes, in Universe or Multiverse? B. Carr, ed., Cambridge University Press, Cambridge, 2009, p. 221.
  • J.L. Barrat and J.P. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge University Press, Cambridge, 2003.
  • J.M. Ziman, Models of Disorder, Cambridge University Press, Cambridge, 1979.
  • N.H. March, Liquid Metals, Concepts and Theory, Cambridge University Press, New York, 1990.
  • G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys.82 (2010), pp. 789–845.
  • L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 5. Statistical Physics, Part 1, Pergamon Press, Oxford, 1970.
  • D.C. Wallace, Liquid dynamics theory of high-temperature specific heat, Phys. Rev. E 57 (1998), pp. 1717–1722.
  • D.C. Wallace, Statistical Physics of Crystals and Liquids, World Scientific, Singapore, 2002.
  • J. Proctor, The Liquid and Supercritical States of Matter, CRC Press, Boca Raton, 2021.
  • J.A. Barker and D. Henderson, What is “liquid”? Understanding the states of matter, Rev. Mod. Phys. 48 (1976), pp. 587–671.
  • J.D. Weeks, D. Chandler and H.C. Andersen, Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Chem. Phys. 54 (1971), pp. 5237–5247.
  • D. Chandler, J.D. Weeks and H.C. Andersen, Van der Waals picture of liquids, solids, and phase transformations, Science 220 (1983), pp. 787–794.
  • R. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22 (1954), pp. 1420–1426.
  • Y. Rosenfeld and P. Tarazona, Mol. Phys. 95 (1998), p. 141.
  • L.P. Pitaevskii, Physical Encyclopedia, ed. by A. M. Prokhorov, Vol. 4, 1988, p. 670.
  • K. Trachenko and V.V. Brazhkin, Collective modes and thermodynamics of the liquid state, Rep. Progress Phys. 79 (2016), p. 016502.
  • J.G. Kirkwood, Theory of Liquids, Gordon and Breach, New York, 1968.
  • M. Born and H.S. Green, A general kinetic theory of liquids. I. the molecular distribution functions, Proc. Royal Soc. London 19 (1946), p. 188.
  • P.A. Egelstaff, An Introduction to the Liquid State, Oxford University Press, Oxford, 1994.
  • T.E. Faber, An Introduction Fo the Theory of Liquid Metals, Cambridge University Press, Cambridge, 1972.
  • N.H. March and M.P. Tosi, Atomic Dynamics in Liquids, Dover Publications, New York , 1991.
  • D. Tabor, Gases, Liquids and Solids, Cambridge University Press, Cambridge, 1993.
  • T.E. Faber, Fluid Dynamics for Physicists, Cambridge University Press, Cambridge, 1995.
  • U. Balucani and M. Zoppi, Dynamics of the Liquid State, Oxford University Press, Oxford , 2003.
  • J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, Elsevier, Amsterdam, 2013.
  • C.J. Pickard and R.J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matt. 23 (2011), p. 053201.
  • C.J. Pickard, M. Martinez-Canales and R.J. Needs, Decomposition and terapascal phases of water ice, Phys. Rev. Lett. 110 (2013), p. 245701.
  • A. Sommerfeld, Probleme Der Freien Weglänge, Vorträge über Die Kinetische Theorie, Teubner, Göttingen, 1913/1914.
  • L. Brillouin, J. Phys. 3 (1922), pp. 326–362.
  • L. Brillouin, J. Phys. 6 (1935), p. 337.
  • L. Brillouin, Scientia (Milan) 51 (1932), p. 206.
  • L. Brillouin, Tensors in Mechanics and Elasticity, Academic Press, New York , 1964.
  • P. Debye, Zur Theorie der spezifischen Wrmen, Ann. Phys. 344 (1912), pp. 789–839.
  • A. Einstein, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wrme, Ann. Phys. 327 (1907), pp. 180–190.
  • G.H. Wannier and P.A. Piroué, Une relation entre la viscosité et la chaleur spécifique des liquides simples, Helv. Phys. Acta 29 (1956), p. 221.
  • A.V. Granato, The specific heat of simple liquids, J. Non-Crystalline Solids 307-310 (2002), pp. 376–386.
  • G. Chen, Perspectives on molecular-level understanding of thermophysics of liquids and future research directions, J. Heat Transfer 144 (2022), p. 010801.
  • C. Prescod-Weinstein, Even underwater, money talks, Phys. Today 75(7) (2022), pp. 53–54.
  • J. Frenkel, Kinetic Theory of Liquids, Oxford University Press, London, 1947.
  • R. Zwanzig, Elementary excitations in classical liquids, Phys. Rev. 156 (1966), pp. 190–195.
  • J. Proctor, Modeling of liquid internal energy and heat capacity over a wide pressure-temperature range from first principles, Phys. Fluids 32 (2020), p. 107105.
  • W.X. Li and T. Keyes, Pure translation instantaneous normal modes: Imaginary frequency contributions vanish at the glass transition in CS2, J. Chem. Phys. 7275 (1997), p. 107.
  • J. Moon, S. Thébaud, L. Lindsay and T. Egami, arXiv:2210.06218.
  • L. Landau, Theory of superfluidity of He II, J. Phys. USSR 5 (1941), p. 71.
  • D.F. Brewer and D.O. Edwards, The heat conductivity and viscosity of liquid helium II, Proc. R. Soc. Lond. A 251 (1959), p. 247.
  • S. Chapman and T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1990.
  • P. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories (I): Leading-log results, J. High Energy Phys. 2000 (2000), p. 001.
  • P. Romatschke, Shear Viscosity at infinite coupling: A field theory calculation, Phys. Rev. Lett. 127 (2021), p. 111603.
  • NIST, Thermophysical Properties of Fluid Systems, https://webbook.nist.gov/chemistry/fluid.
  • K. Trachenko and V.V. Brazhkin, Minimal quantum viscosity from fundamental physical constants, Sci. Adv. 6 (2020), p. aba3747.
  • V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov and K. Trachenko, Two liquid states of matter: A dynamic line on a phase diagram, Phys. Rev. E 85 (2012), p. 031203.
  • V.V. Brazhkin and K. Trachenko, What separates a liquid from a gas? Phys. Today 65 (2012), pp. 68–69.
  • V.V. Brazhkin, Y.D. Fomin, A.G. Lyapin, V.N. Ryzhov, E.N. Tsiok and K. Trachenko, “Liquid-Gas” transition in the supercritical region: Fundamental changes in the particle dynamics, Phys. Rev. Lett.111 (2013), p. 145901.
  • C. Cockrell, V.V. Brazhkin and K. Trachenko, Transition in the supercritical state of matter: Review of experimental evidence, Phys. Rep. 941 (2021), pp. 1–27.
  • T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Oxford University Press, New York, 1988.
  • N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders College Publishing, Fort Worth, 1976.
  • J.J. Erpenbeck, Shear viscosity of the Lennard-Jones fluid near the triple point: Green-Kubo results, Phys. Rev. A 38 (1988), pp. 6255–6266.
  • V.V. Brazhkin, Can glassforming liquids be “simple”? Phys. Usp. 62 (2019), pp. 623–629.
  • V.V. Brazhkin, “Quantum” values of extremums of “classical” macroscopic values, Physi. Usp. (2022). Available at https://doi.org/10.3367/UFNr.2022.11.039261.
  • V.V. Brazhkin, Interparticle interaction in condensed media: Some elements are “more equal than others”, Phys. Usp. 52 (2009), pp. 369–376.
  • A.K. Gangopadhyay, Z. Nussinov and K.F. Kelton, Quantum mechanical interpretation of the minimum viscosity of metallic liquids, Phys. Rev. E 106 (2022), p. 054150.
  • Z. Nussinov and S. Chakrabarty, Exact universal chaos, speed limit, acceleration, Planckian transport coefficient, “collapse” to equilibrium, and other bounds in thermal quantum systems, Ann. Phys. (N. Y) 443 (2022), p. 168970.
  • J. Xue, F.S. Nogueira, K.F. Kelton and Z. Nussinov, Deviations from Arrhenius dynamics in high temperature liquids, a possible collapse, and a viscosity bound, Phys. Rev. Res. 4 (2022), p. 043047.
  • K. Behnia and A. Kapitulnik, A lower bound to the thermal diffusivity of insulators, J. Phys.: Condens. Matt. 31 (2019), p. 405702.
  • J. Zaanen, Planckian dissipation, minimal viscosity and the transport in cuprate strange metals, SciPost Phys. 6 (2019), p. 061.
  • J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, J. High Energy Phys. 2016 (2016), p. 106.
  • S.A. Hartnoll, Theory of universal incoherent metallic transport, Nat. Phys. 11 (2015), pp. 54–61.
  • H. Mousatov and S.A. Hartnoll, On the Planckian bound for heat diffusion in insulators, Nat. Phys.16 (2020), pp. 579–584.
  • C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B.A. Olsen, S. Trotzky, T. Enss and J.H. Thywissen, Observation of quantum-limited spin transport in strongly interacting two-dimensional fermi gases, Phys. Rev. Lett. 118 (2017), p. 130405.
  • S. Grozdanov, Bounds on transport from univalence and pole-skipping, Phys. Rev. Lett. 126 (2021), p. 051601.
  • T. Hartman, S.A. Hartnoll and R. Mahajan, Upper bound on diffusivity, Phys. Rev. Lett. 119 (2017), p. 141601.
  • P.B. Patel, Z. Yan, B. Mukherjee, R.J. Fletcher, J. Struck and M. Zwierlein, Universal sound diffusion in a strongly interacting Fermi gas, Science 370 (2020), pp. 1222–1226.
  • E.M. Purcell, Life at low reynolds number, Phys. Rev. B 45 (1977), p. 3.
  • V.F. Weisskopf, About liquids, Trans. N. Y. Acad. Sci. 38 (1977), pp. 202–218.
  • K. Trachenko and V.V. Brazhkin, The quantum mechanics of viscosity, Phys. Today.74(12) (2021), pp. 66–67.
  • B.D. Parry, I.V. Surovtsev, M.T. Cabeen, C.S. O'Hern, E.R. Dufresne and C. Jacobs-Wagner, The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity, Cell 156 (2014), pp. 183–194.
  • N. Bellotto, J. Agudo-Canalejo, R. Colin, R. Golestanian, G. Malengo and V. Sourjik, Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth, eLife (2022).
  • L. Smolin, Scientific alternatives to the anthropic principle, in Universe or Multiverse? B. Carr, ed., Cambridge University Press, Cambridge, 2009, p. 323.
  • A. Vilenkin, Many Worlds in One, Hill and Wang, New York, 2006.
  • B.J. Carr and M.J. Rees, Fine-tuning in living systems, Int. J. Astrobiol. 2 (2003), pp. 79–86.
  • G. Ellis, J.P. Uzan and D. Sloan, Climbing up the theories of nature: Fine-tuning and biological molecules, in Fine Tuning in the Physical Universe, D. Sloan, R.A. Batista, M.T. Hicks, R. Davies, eds., Cambridge University Press, Cambridge, 2022, p. 511.
  • D. Pines and P. Nozieres, The Theory Of Quantum Liquids, Perseus Books, Cambridge, Massachusetts, 1999.
  • A. Griffin, Excitations in a Bose-condensed Liquids, Cambridge Univesity Press, Cambridge, 1993.
  • V.D. Arp, R.D. McCarty and D.G. Friend, Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa, U. S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.
  • Y. Huang, Q. Yu, Q. Chen and R. Wang, Viscosity of liquid and gaseous helium-3 from 3 mK to 500 K, Cryogenics 52 (2012), pp. 538–543.
  • L. Tisza, The theory of liquid helium, Phys. Rev. 72 (1947), pp. 838–854.
  • S. Balibar, The Discovery of Superfluidity, J. Low Temp. Phys. 146 (2007), pp. 441–470.
  • S. Balibar, Laszlo Tisza and the two-fluid model of superfluidity, C. R. Physique 18 (2017), pp. 586–591.
  • A. Nakayama and N. Makri, Simulation of dynamical properties of normal and superfluid helium, PNAS 102 (2005), pp. 4230–4234.
  • L.D. Landau and I.M. Khalatnikov, J. Exp. Theor. Phys. (USSR) 19 (1949), p. 709.
  • J.G. Dash, Viscosity of liquid helium II near the lambda point, The Philosoph. Mag. 3 (1958), pp. 586–590.
  • E. Shuryak, Strongly coupled quark-gluon plasma in heavy ion collisions, Rev. Mod. Phys. 89 (2017), p. 035001.
  • I.R. Klebanov and J.M. Maldacena, Solving quantum field theories via curved spacetimes, Phys. Today. 62(1) (2009), pp. 28–33.
  • P.K. Kovtun, T. Son and D.A.O. Starinets, Viscosity in strongly interacting quantum field theories from Black Hole physics, Phys. Rev. Lett. 94 (2005), p. 111601.
  • T. Schäfer and D. Teaney, Nearly perfect fluidity: From cold atomic gases to hot quark gluon plasmas, Rep. Prog. Phys. 72 (2009), p. 126001.
  • M. Müller, J. Schmalian and L. Fritz, Graphene: A nearly perfect fluid, Phys. Rev. Lett. 103 (2009), p. 025301.
  • J.A.N. Bruin, H. Sakai, R.S. Perry and A.P. Mackenzie, Similarity of scattering rates in metals showing T-linear resistivity, Science 339 (2013), pp. 804–807.
  • T. Enss and J.H. Thywissen, Universal spin transport and quantum bounds for unitary fermions, Ann. Rev. Condens. Matter Phys. 10 (2018), pp. 85–106.
  • A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion, M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z.Z. Li, P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson, L. Taillefer and C. Proust, Universal T-linear resistivity and Planckian dissipation in overdoped cuprates, Nature Phys.15 (2019), pp. 142–147.
  • S. Sachdev, Quantum Phase Transitions, Quantum Phase Transitions, New York, 2011.
  • G.E. Volovik, Quantum turbulence and Planckian dissipation, JETP Lett. 115 (2022), pp. 461–465.
  • G. Gamow, Numerology of the constants of nature, PNAS 59 (1968), pp. 313–318.
  • J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska and A.M. Wolfe, Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett. 87 (2001), p. 091301.
  • E. Reinhold, R. Buning, U. Hollenstein, A. Ivanchik, P. Petitjean and W. Ubachs, Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra, Phys. Rev. Lett. 96 (2006), p. 151101.
  • K. Trachenko, M. Baggioli, K. Behnia and V.V. Brazhkin, Universal lower bounds on energy and momentum diffusion in liquids, Phys. Rev. B 103 (2021), p. 014311.
  • G.A. Slack, The thermal conductivity of nonmetallic crystals, Solid State Phys. 34 (1979), p. 1.
  • C. Kittel, Interpretation of the thermal conductivity of glasses, Phys. Rev. 75 (1949), pp. 972–974.
  • L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid and M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508 (2014), pp. 373–377.
  • M. Gurvitch, Ioffe-Regel criterion and resistivity of metals, Phys. Rev. B 24 (1981), pp. 7404–7407.
  • A. Sommer, M. Ku, G. Roati and M.W. Zwierlein, Universal spin transport in a strongly interacting Fermi gas, Nature 472 (2011), pp. 201–204.
  • A.B. Bardon, S. Beattie, C. Luciuk, W. Cairncross, D. Fine, N.S. Cheng, G.J.A. Edge, E. Taylor, S. Zhang, S. Trotzky and J.H. Thywissen, Transverse demagnetization dynamics of a unitary fermi gas, Science 344 (2014), pp. 722–724.
  • S. Trotzky, S. Beattie, C. Luciuk, S. Smale, A.B. Bardon, T. Enss, E. Taylor, S. Zhang and J.H. Thywissen, Observation of the Leggett-Rice Effect in a unitary fermi gas, Phys. Rev. Lett. 114 (2015), p. 015301.
  • R.F. Berg, M.R. Moldover and G.A. Zimmerli, Viscoelasticity of Xenon near the critical point, Phys. Rev. Lett. 82 (1999), pp. 920–923.
  • M.A. Anisimov, Letter to the editor: Fifty years of breakthrough discoveries in fluid criticality, Int. J. Thermophys. 32 (2011), pp. 2001–2009.
  • E. Kiran, P.G. Debenedetti and C.J. Peters, Supercritical Fluids: Fundamentals and Applications, NATO Series E: Applied Sciences, Vol. 366, Kluwer, Boston, 2000.
  • J. McHardy and S.P. Sawan, Sawan, Supercritical Fluid Cleaning: Fundamentals, Technology and Applications, Noyes Publications, 1998.
  • G. Brunner, Applications of supercritical fluids, Annu. Rev. Chem. Biomol. Eng. 1 (2010), pp. 321–342.
  • E.S. Alekseev, A.Y. Alentiev, A.S. Belova, V.I. Bogdan, T.V. Bogdan, A.V. Bystrova, E.R. Gafarova, E.N. Golubeva, E.A. Grebenik, O.I. Gromov, V.A. Davankov, S.G. Zlotin, M.G. Kiselev, A.E. Koklin, Y.N. Kononevich, A.E. Lazhko, V.V. Lunin, S.E. Lyubimov, O.N. Martyanov, I.I. Mishanin, A.M. Muzafarov, N.S. Nesterov, A.Y. Nikolaev, R.D. Oparin, O.O. Parenago, O.P. Parenago, Y.A. Pokusaeva, I.A. Ronova, A.B. Solovieva, M.N. Temnikov, P.S. Timashev, O.V. Turova, E.V. Filatova, A.A. Philippov, A.M. Chibiryaev and A.S. Shalygin, Supercritical fluids in chemistry, Russian Chem. Rev. 89 (2020), pp. 1337–1427.
  • W. Leitner, Supercritical carbon dioxide as a green reaction medium for catalysis, Acc. Chem. Res. 35 (2002), pp. 746–756.
  • C.A. Eckert, B.L. Knutson and P.G. Debenedetti, Supercritical fluids as solvents for chemical and materials processing, Nature 383 (1996), pp. 313–318.
  • P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino and E.E. Brock, Reactions at supercritical conditions: Applications and fundamentals, AIChE J. 41 (1995), pp. 1723–1778.
  • E.J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing, J. Supercrit. Fluids. 28 (2004), pp. 121–191.
  • P.G. Jessop, T. Ikariya and R. Noyori, Homogeneous catalysis in supercritical fluids, Chem. Rev. 99 (1999), pp. 475–494.
  • I.V. Aleksandrov, A.F. Goncharov, A.N. Zisman and S.M. Stishov, Diamond at high pressures: Raman scattering of light, equation of state, and highpressure scale, Sov. Phys. JETP 66 (1987), p. 384.
  • V.V. Brazhkin, A.G. Lyapin and R.J. Hemley, Harder than diamond: Dreams and reality, Phil. Mag. A 82 (2002), pp. 231–253.
  • V.V. Brazhkin and V.L. Solozhenko, Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible, J. Appl. Phys. 125 (2019), p. 130901.
  • D.A. Kirzhnits, Extremal states of matter (ultrahigh pressures and temperatures), Sov. Phys. Usp.14 (1972), pp. 512–523.
  • C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008), pp. 385–388.
  • J. Frenkel, Zur Theorie der Elastizit–tsgrenze und der Festigkeit kristallinischer K–Per, Z. Phys. 37 (1926), pp. 572–609.
  • K.A. Bukreeva, Theoretical shear strength of FCC and HCP metals, Sol. State Phys. 56 (2014), p. 423.
  • S. Kotrechko, I. Mikhailovskij, T. Mazilova, E. Sadanov, A. Timoshevskii, N. Stetsenko and Y. Matviychuk, A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode, Nanoscale Res. Lett. 10 (2015), p. 1.
  • M. Liu, V.I. Artyukhov, H. Lee, F. Xu and B.I. Yakobson, Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope, ACS. Nano. 7 (2013), pp. 10075–10082.
  • M.I. Katsnelson, Graphene, Cambridge University Press, 2012.
  • R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, K.S. Booth, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008), pp. 1308–1308.
  • K. Trachenko, B. Monserrat, C.J. Pickard and V.V. Brazhkin, Speed of sound from fundamental physical constants, Sci. Adv. 6 (2020), p. eabc8662.
  • J.C. Phillips, Ionicity of the chemical bond in crystals, Rev. Mod. Phys. 42 (1970), pp. 317–356.
  • D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2004.
  • I.N. Frantsevich, F.F. Vornov and S.A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Non-Metals, Naukova Dumka, Kyiv, 1982.
  • M.E. Drits, Properties of Elements, Metallurgy, Moscow, 1997.
  • B. Ratner, Statistical and Machine-Learning Data Mining, CRC Press, 2011.
  • Y. Machida, N. Matsumoto, T. Isono and K. Behnia, Phonon hydrodynamics and ultrahigh – room-temperature thermal conductivity in thin graphite, Science 367 (2020), pp. 309–312.
  • M.B. Gitis and I.G. Mikhailov, Acoustical J. 13 (1967), p. 556.
  • R.P. Dias and I.F. Silvera, Observation of the wigner-huntington transition to metallic hydrogen, Science 355 (2017), pp. 715–718.
  • P. Loubeyre, F. Occelli and P. Dumas, Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen, Nature 577 (2020), pp. 631–635.
  • J.M. McMahon, M.A. Morales, C. Pierleoni and D.M. Ceperley, The properties of hydrogen and helium under extreme conditions, Rev. Mod. Phys. 84 (2012), pp. 1607–1653.
  • A. Cherman, T.D. Cohen and A. Nellore, Bound on the speed of sound from holography, Phys. Rev. D 80 (2009), p. 066003.
  • P. Bedaque and A.W. Steiner, Sound velocity bound and neutron stars, Phys. Rev. Lett. 114 (2015), p. 013103.
  • C. Hoyos, N. Jokela, D.R. Fernández and A. Vuorinen, Breaking the sound barrier in holography, Phys. Rev., D. 94 (2016), p. 106008.
  • C. Hoyos, N. Jokela and A. Vuorinen, Holographic approach to compact stars and their binary mergers, Prog. Part. Nucl. Phys. 126 (2022), p. 103972.
  • S. Altiparmak, C. Ecker, andL. Rezzolla, On the sound speed in neutron stars, Astrophys. J. Lett. 939 (2022), p. L34.
  • L. Landau and R. Peierls, Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie, Zs. Phys. 69 (1931), pp. 56–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.