78
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Insights into the advances in therapeutic drugs for neuroinflammation-related diseases

Received 11 Aug 2023, Accepted 12 Sep 2023, Published online: 21 Sep 2023

References

  • Cai X, Zhang K, Xie X, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate tau-related neuropathology and cognitive decline. Biomaterials. 2020;231:119678. doi:10.1016/j.biomaterials.2019.119678.
  • Belarbi K, Cuvelier E, Bonte MA, et al. Glycosphingolipids and neuroinflammation in parkinson's disease. Mol Neurodegener. 2020;15(1):59. doi:10.1186/s13024-020-00408-1.
  • Bhargava P, Smith MD, Mische L, et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest. 2020;130(7):3467–3482. doi:10.1172/JCI129401.
  • Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. doi:10.1186/s12974-019-1516-2.
  • Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–783. doi:10.1126/science.aag2590.
  • Baranowski BJ, Marko DM, Fenech RK, et al. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Appl Physiol Nutr Metab. 2020;45(10):1055–1065. doi:10.1139/apnm-2019-0910.
  • Bjelobaba I, Savic D, Lavrnja I. Multiple sclerosis and neuroinflammation_ the overview of current and prospective therapies. Curr Pharm Des. 2017;23(5):693–730. doi:10.2174/1381612822666161214153108.
  • Abg Abd Wahab DY, Gau CH, Zakaria R, et al. Review on cross talk between neurotransmitters and__neuroinflammation in striatum and cerebellum in the__mediation of motor behaviour. Biomed Res Int. 2019;2019:1767203–1767210. doi:10.1155/2019/1767203.
  • Shaveta S, Singh A, Kaur J, et al. Arachidonic acid metabolic pathway: appraisal of differential availability of arachidonic acid and anti-inflammatory drugs to COX-1, COX-2 and 5-LOX enzymes. Inflammation Cell Signaling. 2014;1:1–8.
  • Wadhwa M, Prabhakar A, Anand JP, et al. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun. 2019;82:129–144. doi:10.1016/j.bbi.2019.08.004.
  • Kitagishi Y, Kobayashi M, Kikuta K, et al. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat. 2012;2012:752563. doi:10.1155/2012/752563.
  • Nakano N, Matsuda S, Ichimura M, et al. PI3K/AKT signaling mediated by G proteincoupled receptors is involved in neurodegenerative Parkinson's disease (review). Int J Mol Med. 2017;39(2):253–260. doi:10.3892/ijmm.2016.2833.
  • Tyagi E, Agrawal R, Nath C, et al. Cholinergic protection via alpha7 nicotinic acetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation. Neurochem Int. 2010;56(1):135–142. doi:10.1016/j.neuint.2009.09.011.
  • Chen YN, Sha HH, Wang YW, et al. Histamine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats. J Neuro­inflammation. 2020;17(1):217. doi:10.1186/s12974-020-01886-2.
  • Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer's disease. J Biomed Sci. 2017;24(1):47. doi:10.1186/s12929-017-0355-7.
  • Kim DC, Quang TH, Yoon CS, et al. Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells. Food Chem. 2016;213:69–75. doi:10.1016/j.foodchem.2016.06.068.
  • Szwajgier D, Borowiec K, Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 2017;9(5):477. doi:10.3390/nu9050477.
  • Zhang S, Huang Y, Li Y, et al. Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive. Food Chem. 2019;286:421–427. doi:10.1016/j.foodchem.2019.02.031.
  • Leite AZ, Rodrigues NC, Gonzaga MI, et al. Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients. Front Immunol. 2017;8:1107. doi:10.3389/fimmu.2017.01107.
  • Lee M. Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci. 2013;14(1):21–32. doi:10.2174/1389203711314010005.
  • Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462. doi:10.1038/35013070.
  • Yang L, Bose S, Ngo AH, et al. Innocent but deadly: nontoxic organoiridium catalysts promote selective cancer cell death. ChemMedChem. 2017;12(4):292–299. doi:10.1002/cmdc.201600638.
  • Gamage R, Wagnon I, Rossetti I, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577912. doi:10.3389/fncel.2020.577912.
  • Mannon EC, Sun J, Wilson K, et al. A basic solution to activate the cholinergic anti-inflammatory pathway via the mesothelium? Pharmacol Res. 2019;141:236–248. doi:10.1016/j.phrs.2019.01.007.
  • Akaike A, Izumi Y. Overview. In: Akaike A, Shimohama S, Misu Y, editors. Nicotinic acetylcholine receptor signaling in neuroprotection. Singapore: Springer, 2018;1–15.
  • Shi S, Liang D, Bao M, et al. Gx-50 inhibits neuroinflammation via alpha7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. J Alzheimers Dis. 2016;50(3):859–871. doi:10.3233/JAD-150963.
  • Prickaerts J, van Goethem NP, Chesworth R, et al. EVP-6124, a novel and selective alpha7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of alpha7 nicotinic acetylcholine receptors. Neuropharmacology. 2012;62(2):1099–1110. doi:10.1016/j.neuropharm.2011.10.024.
  • Kong W, Kang K, Gao Y, et al. GTS-21 protected against LPS-Induced sepsis myocardial injury in mice through alpha7nAChR. Inflammation. 2018;41(3):1073–1083. doi:10.1007/s10753-018-0759-x.
  • Lee AM, Arreola AC, Kimmey BA, et al. Administration of the nicotinic acetylcholine receptor agonists ABT-089 and ABT-107 attenuates the reinstatement of nicotine-seeking behavior in rats. Behav Brain Res. 2014;274:168–175. doi:10.1016/j.bbr.2014.08.016.
  • Tietje KR, Anderson DJ, Bitner RS, et al. Preclinical characterization of A-582941: a novel alpha7 neuronal nico tinic receptor agonist with broad spectrum cognition-enhancing propert ies. CNS Neurosci Ther. 2008;14(1):65–82. doi:10.1111/j.1527-3458.2008.00037.x.
  • Han B, Li X, Hao J. The cholinergic anti-inflammatory pathway: an innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev. 2017;77:358–368. doi:10.1016/j.neubiorev.2017.04.002.
  • Fancellu G, Chand K, Tomas D, et al. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem. 2020;35(1):211–226. doi:10.1080/14756366.2019.1689237.
  • Szeto JYY, Lewis SJG. Current treatment options for Alzheimer's disease and Parkinson's disease dementia. Curr Neuropharmacol. 2016;14(4):326–338.
  • Ishima T, Nishimura T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1656–1659. doi:10.1016/j.pnpbp.2008.06.011.
  • Gomaa AA, Makboul RM, El-Mokhtar MA, et al. Evaluation of the neuroprotective effect of donepezil in type 2 diabetic rats. Fundam Clin Pharmacol. 2021;35(1):97–112. doi:10.1111/fcp.12585.
  • Adlimoghaddam A, Neuendorff M, Roy B, et al. A review of clinical treatment considerations of donepezil in severe Alzheimer's disease. CNS Neurosci Ther. 2018;24(10):876–888. doi:10.1111/cns.13035.
  • Khalaf NEA, El Banna FM, Youssef MY, et al. Clopidogrel combats neuroinflammation and enhances learning behavior and memory in a rat model of Alzheimer's disease. Pharmacol Biochem Behav. 2020;195:172956. doi:10.1016/j.pbb.2020.172956.
  • Savino R, Carotenuto M, Polito AN, et al. Analyzing the potential biological determinants of autism spectrum disorder: from neuroinflammation to the kynurenine pathway. Brain Sci. 2020;10(9):1–22.
  • Ramírez MJ, Cenarruzabeitia E, Lasheras B, et al. 5-HT2 receptor regulation of acetylcholine release induced by dopaminergic stimulation in rat striatal slices. Brain Res. 1997;757(1):17–23. doi:10.1016/s0006-8993(96)01434-5.
  • Stahl SM. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr. 2015;20(5):455–459. doi:10.1017/S1092852915000346.
  • de Cates AN, Martens MAG, Wright LC, et al. 5-HT4 receptor agonist effects on functional connectivity in the human brain: implications for procognitive action. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;S2451-9022(22)00099-X. doi:10.1016/j.bpsc.2023.03.014.
  • Nirogi R, Jayarajan P, Shinde A, et al. Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders. Biomolecules. 2023;13(2):309. doi:10.3390/biom13020309.
  • Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:48. doi:10.3389/fcvm.2017.00048.
  • Ali T, Hao Q, Ullah N, et al. Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci. 2020;13:96. doi:10.3389/fnmol.2020.00096.
  • Ali T, Rahman SU, Hao Q, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res. 2020;69(2):e12667.
  • Shah SA, Khan M, Jo MH, et al. Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther. 2017;23(1):33–44. doi:10.1111/cns.12588.
  • Popovic M, Stanojevic Z, Tosic J, et al. Neuroprotective arylpiperazine dopaminergic/serotonergic ligands suppress experimental autoimmune encephalomyelitis in rats. J Neurochem. 2015;135(1):125–138. doi:10.1111/jnc.13198.
  • Wang M, Zong HF, Chang KW, et al. 5-HT1AR alleviates Aβ-induced cognitive decline and neuroinflammation through crosstalk with NF-κB pathway in mice. Int Immunopharmacol. 2020;82:106354. doi:10.1016/j.intimp.2020.106354.
  • Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation. 2019;16(1):148. doi:10.1186/s12974-019-1538-9.
  • Maneglier B, Guillemin GJ, Clayette P, et al. Serotonin decreases HIV-1 replication in primary cultures of human macrophages through 5-HT(1A) receptors. Br J Pharmacol. 2008;154(1):174–182. doi:10.1038/bjp.2008.80.
  • Lanfumey L, Hamon M. 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord. 2004;3(1):1–10. doi:10.2174/1568007043482570.
  • Fernandez-Ruiz J, Sagredo O, Pazos MR, et al. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol. 2013;75(2):323–333. doi:10.1111/j.1365-2125.2012.04341.x.
  • Magen I, Avraham Y, Ackerman Z, et al. Cannabidiol ameliorates cognitive and motor impairments in bile-duct ligated mice via 5-HT1A receptor activation. Br J Pharmacol. 2010;159(4):950–957. doi:10.1111/j.1476-5381.2009.00589.x.
  • Qiu Y, Chen D, Huang X, et al. Neuroprotective effects of HTR1A antagonist WAY-100635 on scopolamine-induced delirium in rats and underlying molecular mechanisms. BMC Neurosci. 2016;17(1):66. doi:10.1186/s12868-016-0300-9.
  • Lu J, Zhang C, Lv J, et al. Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction. Aging Cell. 2021;20(1):e13286. doi:10.1111/acel.13286.
  • Savignac HM, Couch Y, Stratford M, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-beta levels in male mice. Brain Behav Immun. 2016;52:120–131. doi:10.1016/j.bbi.2015.10.007.
  • Nagatomo T, Rashid M, Abul Muntasir H, et al. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system. Pharmacol Ther. 2004;104(1):59–81. doi:10.1016/j.pharmthera.2004.08.005.
  • Yang W, Wang Q, Kanes SJ, et al. Altered RNA editing of serotonin 5-HT2C receptor induced by interferon: implications for depression associated with cytokine therapy. Brain Res Mol Brain Res. 2004;124(1):70–78. doi:10.1016/j.molbrainres.2004.02.010.
  • Regue M, Poilbout C, Martin V, et al. Increased 5-HT2C receptor editing predisposes to PTSD-like behaviors and alters BDNF and cytokines signaling. Transl Psychiatry. 2019;9(1):100. doi:10.1038/s41398-019-0431-8.
  • Hwang J, Zheng LT, Ock J, et al. Anti-inflammatory effects of m-chlorophenylpiperazine in brain glia cells. Int Immunopharmacol. 2008;8(12):1686–1694. doi:10.1016/j.intimp.2008.08.004.
  • Fakhfouri G, Mousavizadeh K, Mehr SE, et al. From chemotherapy-induced emesis to neuroprotection: therapeutic opportunities for 5-HT3 receptor antagonists. Mol Neurobiol. 2015;52(3):1670–1679. doi:10.1007/s12035-014-8957-5.
  • Rezvani AH, Kholdebarin E, Brucato FH, et al. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):269–275. doi:10.1016/j.pnpbp.2008.11.018.
  • Baranger K, Giannoni P, Girard SD, et al. Chronic treatments with a 5-HT4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer's disease. Neuropharmacology. 2017;126:128–141. doi:10.1016/j.neuropharm.2017.08.031.
  • Marcos B, Chuang TT, Gil-Bea FJ, et al. Effects of 5-HT6 receptor antagonism and cholinesterase inhibition in models of cognitive impairment in the rat. Br J Pharmacol. 2008;155(3):434–440. doi:10.1038/bjp.2008.281.
  • Wixey JA, Reinebrant HE, Chand KK, et al. Disruption to the 5-HT7 receptor following Hypoxia-Ischemia in the immature rodent brain. Neurochem Res. 2018;43(3):711–720. doi:10.1007/s11064-018-2473-3.
  • Lieb K, Biersack L, Waschbisch A, et al. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem. 2005;93(3):549–559. doi:10.1111/j.1471-4159.2005.03079.x.
  • Smagin GN, Song D, Budac DP, et al. Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism. Prog Neuro­psychopharmacol Biol Psychiatry. 2016;68:25–30. doi:10.1016/j.pnpbp.2016.03.001.
  • Greenberg WM, Citrome L. Pharmacokinetics and pharmacodynamics of lurasidone hydrochloride, a Second-Generation antipsychotic: a systematic review of the published literature. Clin Pharmacokinet. 2017;56(5):493–503. doi:10.1007/s40262-016-0465-5.
  • Albayrak A, Halici Z, Cadirci E, et al. Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur J Pharmacol. 2013;715(1–3):270–279. doi:10.1016/j.ejphar.2013.05.010.
  • Meyer JH, Cervenka S, Kim M-J, et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7(12):1064–1074. doi:10.1016/S2215-0366(20)30255-8.
  • Furgiuele AR, Kinnard WJ, Buckley JP. Central effects of beta-phenylisopropylhydrazine and iproniazid. J Pharmacol Exp Ther. 1962;137:356–360.
  • Tomaz VS, Chaves Filho AJM, Cordeiro RC, et al. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord. 2020;268:188–200. doi:10.1016/j.jad.2020.03.022.
  • Bautista-Aguilera OM, Esteban G, Chioua M, et al. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids. Drug Des Devel Ther. 2014;8:1893–1910. doi:10.2147/DDDT.S69258.
  • Binde CD, Tvete IF, Gasemyr J, et al. A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for parkinson's disease. Br J Clin Pharmacol. 2018;84(9):1917–1927. doi:10.1111/bcp.13651.
  • Tabi T, Vecsei L, Youdim MB, et al. Selegiline: a molecule with innovative potential. J Neural Transm (Vienna). 2020;127(5):831–842. doi:10.1007/s00702-019-02082-0.
  • Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183–1241. doi:10.1152/physrev.00043.2007.
  • Saraiva C, Barata-Antunes S, Santos T, et al. Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci Rep. 2019;9(1):8384. doi:10.1038/s41598-019-44816-w.
  • Xu J, Zhang X, Qian Q, et al. Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammation. 2018;15(1):41. doi:10.1186/s12974-018-1068-x.
  • Barata-Antunes S, Cristovao AC, Pires J, et al. Dual role of histamine on microglia-induced neurodegeneration. Biochim Biophys Acta Mol Basis Dis. 2017;1863(3):764–769. doi:10.1016/j.bbadis.2016.12.016.
  • Malek R, Arribas RL, Palomino-Antolin A, et al. New dual small molecules for Alzheimer's disease therapy combining histamine H3 receptor (H3R) antagonism and calcium channels blockade with additional cholinesterase inhibition. J Med Chem. 2019;62(24):11416–11422. doi:10.1021/acs.jmedchem.9b00937.
  • Blasco MP, Chauhan A, Honarpisheh P, et al. Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. J Neuroinflammation. 2020;17(1):160. doi:10.1186/s12974-020-01833-1.
  • Parsons ME, Ganellin CR. Histamine and its receptors. Br J Pharmacol. 2006;147(1):S127–S135.
  • Hu W, Chen Z. The roles of histamine and its receptor ligands in Central nervous system disorders: an update. Pharmacol Ther. 2017;175:116–132. doi:10.1016/j.pharmthera.2017.02.039.
  • Shi Z, Fultz RS, Engevik MA, et al. Distinct roles of histamine H1- and H2-receptor signaling pathways in inflammation-associated colonic tumorigenesis. Am J Physiol Gastrointest Liver Physiol. 2019;316(1):G205–G216. doi:10.1152/ajpgi.00212.2018.
  • Chen Y, Zhen W, Guo T, et al. Histamine receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS One. 2017;12(12):e0189380. doi:10.1371/journal.pone.0189380.
  • Eissa N, Sadeq A, Sasse A, et al. Role of neuroinflammation in autism spectrum disorder and the emergence of brain histaminergic system. Lessons also for BPSD? Front Pharmacol. 2020;11:886. doi:10.3389/fphar.2020.00886.
  • Teuscher C, Subramanian M, Noubade R, et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc Natl Acad Sci U S A. 2007;104(24):10146–10151. doi:10.1073/pnas.0702291104.
  • Sadek B, Saad A, Sadeq A, et al. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res. 2016;312:415–430. doi:10.1016/j.bbr.2016.06.051.
  • Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain. 2019;20(1):30. doi:10.1186/s10194-019-0984-1.
  • Schlicker E, Kathmann M. Role of the histamine H3 receptor in the Central nervous system. Handb Exp Pharmacol. 2017;241:277–299. doi:10.1007/164_2016_12.
  • Alachkar A, Łażewska D, Kieć-Kononowicz K, et al. The histamine H3 receptor antagonist E159 reverses memory deficits induced by dizocilpine in passive avoidance and novel object recognition paradigm in rats. Front Pharmacol. 2017;8:709. doi:10.3389/fphar.2017.00709.
  • Eissa N, Khan N, Ojha SK, et al. The histamine H3 receptor antagonist DL77 ameliorates MK801-Induced memory deficits in rats. Front Neurosci. 2018;12:42. doi:10.3389/fnins.2018.00042.
  • Sadek B, Saad A, Subramanian D, et al. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology. 2016;106:46–55. doi:10.1016/j.neuropharm.2015.10.023.
  • Rangon CM, Schang AL, Van Steenwinckel J, et al. Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain Behav Immun. 2018;74:265–276. doi:10.1016/j.bbi.2018.09.017.
  • Yuan H, Silberstein SD. Histamine and migraine. Headache. 2018;58(1):184–193. doi:10.1111/head.13164.
  • Eissa N, Azimullah S, Jayaprakash P, et al. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact. 2019;312:108775. doi:10.1016/j.cbi.2019.108775.
  • Dettori I, Gaviano L, Melani A, et al. A selective histamine H4 receptor antagonist, JNJ7777120, is protective in a rat model of transient cerebral ischemia. Front Pharmacol. 2018;9:1231. doi:10.3389/fphar.2018.01231.
  • Passani MB, Ballerini C. Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front Syst Neurosci. 2012;6:32. doi:10.3389/fnsys.2012.00032.
  • Ferreira R, Santos T, Gonçalves J, et al. Histamine modulates microglia function. J Neuroinflammation. 2012;9:90. doi:10.1186/1742-2094-9-90.
  • Schneider EH, Seifert R. The histamine H4-receptor and the Central and peripheral nervous system: a critical analysis of the literature. Neuropharmacology. 2016;106:116–128. doi:10.1016/j.neuropharm.2015.05.004.
  • Dong H, Zhang W, Zeng X, et al. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol. 2014;49(3):1487–1500. doi:10.1007/s12035-014-8697-6.
  • Fang Q, Xicoy H, Shen J, et al. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav Immun. 2021;92:127–138. doi:10.1016/j.bbi.2020.11.036.
  • Zhang M, Thurmond RL, Dunford PJ. The histamine H(4) receptor: a novel modulator of inflammatory and immune disorders. Pharmacol Ther. 2007;113(3):594–606. doi:10.1016/j.pharmthera.2006.11.008.
  • Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217. doi:10.1124/pr.110.002642.
  • Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160(1–2):62–73. doi:10.1016/j.cell.2014.11.047.
  • Wang T, Nowrangi D, Yu L, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation. 2018;15(1):2. doi:10.1186/s12974-017-1039-7.
  • Missale C, Nash SR, Robinson SW, et al. Dopamine receptors_ from structure to function. Physiol Rev. 1998;78(1):189–225. doi:10.1152/physrev.1998.78.1.189.
  • Wang B, Chen T, Xue L, et al. Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors. Int Immunopharmacol. 2019;73:1–9. doi:10.1016/j.intimp.2019.04.053.
  • Pacheco R. Targeting dopamine receptor D3 signalling in inflammation. Oncotarget. 2017;8(5):7224–7225. doi:10.18632/oncotarget.14601.
  • Montoya A, Elgueta D, Campos J, et al. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflammation. 2019;16(1):258. doi:10.1186/s12974-019-1652-8.
  • Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol. 2019;76:105908. doi:10.1016/j.intimp.2019.105908.
  • Wang J, Lai S, Li G, et al. Microglial activation contributes to depressive-like behavior in dopamine D3 receptor knockout mice. Brain Behav Immun. 2020;83:226–238. doi:10.1016/j.bbi.2019.10.016.
  • Crowley T, Cryan JF, Downer EJ, et al. Inhibiting neuroinflammation: the role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun. 2016;54:260–277. doi:10.1016/j.bbi.2016.02.001.
  • Lang L, Xu B, Yuan J, et al. GABA-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the NLRP3 inflammasome and NF-kappaB signaling pathways. Int Immunopharmacol. 2020;89(Pt B):106908. doi:10.1016/j.intimp.2020.106908.
  • Flood L, Korol SV, Ekselius L, et al. Interferon-gamma potentiates GABAA receptor-mediated inhibitory currents in rat hippocampal CA1 pyramidal neurons. J Neuroimmunol. 2019;337:577050. doi:10.1016/j.jneuroim.2019.577050.
  • Shimada T, Yamagata K. Pentylenetetrazole-Induced kindling mouse model. J Vis Exp. 2018;(136):56573.
  • Iqubal A, Sharma S, Sharma K, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci. 2018;211:172–181. doi:10.1016/j.lfs.2018.09.025.
  • Kalantaripour TP, Esmaeili-Mahani S, Sheibani V, et al. Anticonvulsant and neuroprotective effects of apelin-13 on pentylenetetrazole-induced seizures in male rats. Biomed Pharmacother. 2016;84:258–263. doi:10.1016/j.biopha.2016.09.048.
  • Ha SK, Shobha D, Moon E, et al. Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorg Med Chem Lett. 2010;20(13):3969–3971. doi:10.1016/j.bmcl.2010.04.133.
  • Ramirez K, Niraula A, Sheridan JF. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain Behav Immun. 2016;51:154–168. doi:10.1016/j.bbi.2015.08.011.
  • Di Ciano P, Everitt BJ. The GABA(B) receptor agonist baclofen attenuates cocaine- and heroin-seeking behavior by rats. Neuropsychopharmacology. 2003;28(3):510–518. doi:10.1038/sj.npp.1300088.
  • Tyagi RK, Bisht R, Pant J, et al. Possible role of GABA-B receptor modulation in MPTP induced parkinson's disease in rats. Exp Toxicol Pathol. 2015;67(2):211–217. doi:10.1016/j.etp.2014.12.001.
  • Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi:10.1038/ni.1923.
  • Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 2017;46(6):957–967. doi:10.1016/j.immuni.2017.06.006.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi:10.1038/nature21029.
  • Wei Y, Chen T, Bosco DB, et al. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia. 2021;69(5):1155–1169. doi:10.1002/glia.23955.
  • Roselli F, Karasu E, Volpe C, et al. Medusa's head: the complement system in traumatic brain and spinal cord injury. J Neurotrauma. 2018;35(2):226–240. doi:10.1089/neu.2017.5168.
  • Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44(5):999–1010. doi:10.1016/j.molimm.2006.03.007.
  • An XQ, Xi W, Gu CY, et al. Complement protein C5a enhances the beta-amyloid-induced neuro-inflammatory response in microglia in Alzheimer's disease. Med Sci (Paris). 2018;34:116–120. doi:10.1051/medsci/201834f120.
  • Howell GR, Soto I, Ryan M, et al. Deficiency of complement component 5__ameliorates glaucoma in DBA_2J mice. J Neuroinflammation. 2013;10(1):76–82. doi:10.1186/1742-2094-10-76.
  • Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. Am J Pathol. 2020;190(6):1138–1150. doi:10.1016/j.ajpath.2020.02.006.
  • Litvinchuk A, Wan YW, Swartzlander DB, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. Neuron. 2018;100(6):1337–1353 e5. doi:10.1016/j.neuron.2018.10.031.
  • Zhang LY, Pan J, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10(1):74–90. doi:10.7150/thno.35841.
  • Werneburg S, Jung J, Kunjamma RB, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52(1):167–182 e7. doi:10.1016/j.immuni.2019.12.004.
  • Puigdellivol M, Allendorf DH, Brown GC. Sialylation and galectin-3 in Microglia-Mediated neuroinflammation and neurodegeneration. Front Cell Neurosci. 2020;14:162. doi:10.3389/fncel.2020.00162.
  • Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury. Neural Plast. 2019;2019:1071036–1071039. doi:10.1155/2019/1071036.
  • Brandolini L, Grannonico M, Bianchini G, et al. The novel C5aR antagonist DF3016A protects neurons against ischemic neuroinflammatory injury. Neurotox Res. 2019;36(1):163–174. doi:10.1007/s12640-019-00026-w.
  • Fonseca MI, Ager RR, Chu SH, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J Immunol. 2009;183(2):1375–1383. doi:10.4049/jimmunol.0901005.
  • Landlinger C, Oberleitner L, Gruber P, et al. Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer's disease. J Neuroinflammation. 2015;12(1):150. doi:10.1186/s12974-015-0369-6.
  • Xiong C, Liu J, Lin D, et al. Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflammation. 2018;15(1):254. doi:10.1186/s12974-018-1292-4.
  • Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm. 2013;2013:342931–342919. doi:10.1155/2013/342931.
  • Saliba SW, Jauch H, Gargouri B, et al. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J Neuroinflammation. 2018;15(1):322. doi:10.1186/s12974-018-1362-7.
  • Zagon IS, McLaughlin JP, Palumbo S. Pathogenesis and progression of multiple sclerosis: The role of arachidonic acid–mediated neuroinflammation. Brisbane, AU: Codon Publications. 2017.
  • Singh RK. Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer's disease. Neurol Sci. 2020;41(8):2081–2093. doi:10.1007/s10072-020-04369-7.
  • Cui M, Huang Y, Tian C, et al. FOXO3a inhibits TNF-alpha- and IL-1beta-induced astrocyte proliferation: implication for reactive astrogliosis. Glia. 2011;59(4):641–654. doi:10.1002/glia.21134.
  • Thomas MH, Olivier JL. Arachidonic-acid-in-Alzheimers-disease. J Neurol Neuromedicine. 2016;1(9):1–6.
  • Dargahi L, Nasiraei-Moghadam S, Abdi A, et al. Cyclooxygenase (COX)-1 activity precedes the COX-2 induction in abeta-induced neuroinflammation. J Mol Neurosci. 2011;45(1):10–21. doi:10.1007/s12031-010-9401-6.
  • Kang KH, Liou HH, Hour MJ, et al. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology. 2013;73:380–387. doi:10.1016/j.neuropharm.2013.06.014.
  • Jin P, Deng S, Tian M, et al. INT-777 prevents cognitive impairment by activating takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/PKA/CREB signaling axis in a rat model of sepsis. Exp Neurol. 2021;335:113504. doi:10.1016/j.expneurol.2020.113504.
  • Park J, Wang Q, Wu Q, et al. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci Rep. 2019;9(1):8837. doi:10.1038/s41598-019-45311-y.
  • Stancic A, Jandl K, Hasenohrl C, et al. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27(10):1432–1445. doi:10.1111/nmo.12639.
  • Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602. doi:10.1016/j.apsb.2019.10.006.
  • Martinez-Torres S, Cutando L, Pastor A, et al. Monoacylglycerol lipase blockade impairs fine motor coordination and triggers cerebellar neuroinflammation through cyclooxygenase-2. Brain Behav Immun. 2019;81:399–409. doi:10.1016/j.bbi.2019.06.036.
  • Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology. 2018;128:269–281. doi:10.1016/j.neuropharm.2017.10.023.
  • Pasquarelli N, Porazik C, Bayer H, et al. Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of parkinson's disease. Neurochem Int. 2017;110:14–24. doi:10.1016/j.neuint.2017.08.003.
  • McAllister LA, Butler CR, Mente S, et al. Discovery of trifluoromethyl glycol carbamates as potent and selective covalent monoacylglycerol lipase (MAGL) inhibitors for treatment of neuroinflammation. J Med Chem. 2018;61(7):3008–3026. doi:10.1021/acs.jmedchem.8b00070.
  • Rawat C, Kukal S, Dahiya UR, et al. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation. 2019;16(1):197. doi:10.1186/s12974-019-1592-3.
  • Fan X, Li J, Deng X, et al. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur J Med Chem. 2020;193:112217. doi:10.1016/j.ejmech.2020.112217.
  • Zhu J, Li S, Zhang Y, et al. COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells. Am J Transl Res. 2018;10(3):966–974.
  • Mani V, Jaafar SM, Azahan NSM, et al. Ciproxifan improves cholinergic transmission, attenuates neuroinflammation and oxidative stress but does not reduce amyloid level in transgenic mice. Life Sci. 2017;180:23–35. doi:10.1016/j.lfs.2017.05.013.
  • Citraro R, Leo A, Marra R, et al. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/rij rats. Brain Res Bull. 2015;113:1–7. doi:10.1016/j.brainresbull.2015.02.004.
  • Trepanier CH, Milgram NW. Neuroinflammation in Alzheimer's disease: are NSAIDs and selective COX-2 inhibitors the next line of therapy? J Alzheimers Dis. 2010;21(4):1089–1099. doi:10.3233/jad-2010-090667.
  • Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30(4):174–181. doi:10.1016/j.tips.2009.01.002.
  • Shukuri M, Takashima-Hirano M, Tokuda K, et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J Nucl Med. 2011;52(7):1094–1101. doi:10.2967/jnumed.110.084046.
  • Vitale P, Panella A, Scilimati A, et al. COX-1 inhibitors: beyond structure toward therapy. Med Res Rev. 2016;36(4):641–671. doi:10.1002/med.21389.
  • Perrone MG, Vitale P, Ferorelli S, et al. Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier. Eur J Med Chem. 2017;141:404–416. doi:10.1016/j.ejmech.2017.09.066.
  • Calvello R, Lofrumento DD, Perrone MG, et al. Highly selective cyclooxygenase-1 inhibitors P6 and mofezolac counteract inflammatory state both in vitro and in vivo models of neuroinflammation. Front Neurol. 2017;8:251. doi:10.3389/fneur.2017.00251.
  • Calvello R, Panaro MA, Carbone ML, et al. Novel selective COX-1 inhibitors suppress neuroinflammatory mediators in LPS-stimulated N13 microglial cells. Pharmacol Res. 2012;65(1):137–148. doi:10.1016/j.phrs.2011.09.009.
  • Wang Y, Sherchan P, Huang L, et al. Naja sputatrix venom preconditioning attenuates neuroinflammation in a rat model of surgical brain injury via PLA2/5-LOX/LTB4 Cascade activation. Sci Rep. 2017;7(1):5466. doi:10.1038/s41598-017-05770-7.
  • Kumar A, Sharma S, Prashar A, et al. Effect of licofelone–a dual COX/5-LOX inhibitor in intracerebroventricular streptozotocin-induced behavioral and biochemical abnormalities in rats. J Mol Neurosci. 2015;55(3):749–759. doi:10.1007/s12031-014-0414-4.
  • Wang Y, Yang Y, Zhang S, et al. Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging. 2020;87:1–10. doi:10.1016/j.neurobiolaging.2019.12.013.
  • Yu XB, Dong RR, Wang H, et al. Knockdown of hippocampal cysteinyl leukotriene receptor 1 prevents depressive behavior and neuroinflammation induced by chronic mild stress in mice. Psychopharmacology (Berl). 2016;233(9):1739–1749. doi:10.1007/s00213-015-4136-2.
  • Marschallinger J, Schaffner I, Klein B, et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun. 2015;6(1):8466. doi:10.1038/ncomms9466.
  • Michael J, Zirknitzer J, Unger MS, et al. The leukotriene receptor antagonist montelukast attenuates neuroinflammation and affects cognition in transgenic 5xFAD mice. Int J Mol Sci. 2021;22(5):2782. doi:10.3390/ijms22052782.
  • Zakharov S, Kotikova K, Nurieva O, et al. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning. Clin Toxicol (Phila). 2017;55(4):249–259. doi:10.1080/15563650.2017.1284332.
  • Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 2017;8(7):1438–1447. doi:10.1021/acschemneuro.7b00176.
  • Asiimwe N, Yeo SG, Kim MS, et al. Nitric oxide: exploring the contextual link with Alzheimer's disease. Oxid Med Cell Longev. 2016;2016:7205747–7205710. doi:10.1155/2016/7205747.
  • Liy PM, Puzi NNA, Jose S, et al. Nitric oxide modulation in neuroinflammation and the role of mesenchymal stem cells. Exp Biol Med (Maywood). 2021;246(22):2399–2406. doi:10.1177/1535370221997052.
  • Olivera GC, Ren X, Vodnala SK, et al. Nitric oxide protects against Infection-Induced neuroinflammation by preserving the stability of the Blood-Brain barrier. PLoS Pathog. 2016;12(2):e1005442. doi:10.1371/journal.ppat.1005442.
  • Cymerys J, Kowalczyk A, Mikołajewicz K, et al. Nitric oxide influences HSV-1-Induced neuroinflammation. Oxid Med Cell Longev. 2019;2019:2302835–2302817. doi:10.1155/2019/2302835.
  • Bourgognon JM, Spiers JG, Robinson SW, et al. Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc Natl Acad Sci U S A. 2021;118(10): e2009579118. doi:10.1073/pnas.2009579118.
  • Shi Z, An L, Yang X, et al. Nitric oxide inhibitory limonoids as potential anti-neuroinflammatory agents from swietenia mahagoni. Bioorg Chem. 2019;84:177–185. doi:10.1016/j.bioorg.2018.11.012.
  • Bach DH, Liu JY, Kim WK, et al. Synthesis and biological activity of new phthalimides as potential anti-inflammatory agents. Bioorg Med Chem. 2017;25(13):3396–3405. doi:10.1016/j.bmc.2017.04.027.
  • Velagapudi R, El-Bakoush A, Olajide OA. Activation of Nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside. Mol Neurobiol. 2018;55(10):8103–8123. doi:10.1007/s12035-018-0975-2.
  • Zheng Y, Zhu G, He J, et al. Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol. 2019;73:304–311. doi:10.1016/j.intimp.2019.05.033.
  • Yu J, Wang WN, Matei N, et al. Ezetimibe attenuates oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Oxid Med Cell Longev. 2020;2020:4717258–4717214. doi:10.1155/2020/4717258.
  • Zhang Y, Xu N, Ding Y, et al. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav Immun. 2018;70:179–193. doi:10.1016/j.bbi.2018.02.015.
  • Buendia I, Michalska P, Navarro E, et al. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104. doi:10.1016/j.pharmthera.2015.11.003.
  • Lee EJ, Park JS, Lee YY, et al. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-kappaB, Nrf2, and PPAR-gamma signaling pathways. J Neuroinflammation. 2018;15(1):326. doi:10.1186/s12974-018-1363-6.
  • Codarri L, Gyulveszi G, Tosevski V, et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12(6):560–567. doi:10.1038/ni.2027.
  • Nakamichi Y, Udagawa N, Takahashi N. IL-34 and CSF-1: similarities and differences. J Bone Miner Metab. 2013;31(5):486–495. doi:10.1007/s00774-013-0476-3.
  • Okunuki Y, Mukai R, Nakao T, et al. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proc Natl Acad Sci U S A. 2019;116(20):9989–9998. doi:10.1073/pnas.1820387116.
  • Gushchina S, Pryce G, Yip PK, et al. Increased expression of colony-stimulating factor-1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia. 2018;66(10):2108–2125. doi:10.1002/glia.23464.
  • Kokona D, Ebneter A, Escher P, et al. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation. 2018;15(1):340. doi:10.1186/s12974-018-1373-4.
  • Henry RJ, Ritzel RM, Barrett JP, et al. Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci. 2020;40(14):2960–2974. doi:10.1523/JNEUROSCI.2402-19.2020.
  • Sosna J, Philipp S, Albay R, 3rd, et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Mol Neurodegener. 2018;13(1):11. doi:10.1186/s13024-018-0244-x.
  • Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142(10):3243–3264. doi:10.1093/brain/awz241.
  • Dagher NN, Najafi AR, Kayala KM, et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation. 2015;12(1):139. doi:10.1186/s12974-015-0366-9.
  • Milanovic D, Pesic V, Loncarevic-Vasiljkovic N, et al. The fas ligand/fas death receptor pathways contribute to Propofol-Induced apoptosis and neuroinflammation in the brain of neonatal rats. Neurotox Res. 2016;30(3):434–452. doi:10.1007/s12640-016-9629-1.
  • Ziebell JM, Bye N, Semple BD, et al. Attenuated neurological deficit, cell death and lesion volume in fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res. 2011;1414:94–105. doi:10.1016/j.brainres.2011.07.056.
  • Krishnan A, Kocab AJ, Zacks DN, et al. A small peptide antagonist of the fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation. 2019;16(1):184. doi:10.1186/s12974-019-1576-3.
  • Duarte JN. Neuroinflammatory mechanisms of mitochondrial dysfunction and neurodegeneration in glaucoma. J Ophthalmol. 2021;2021:4581909–4581918. doi:10.1155/2021/4581909.
  • Alexiou A, Soursou G, Chatzichronis S, et al. Role of GTPases in the regulation of mitochondrial dynamics in Alzheimer's disease and CNS-Related disorders. Mol Neurobiol. 2019;56(6):4530–4538. doi:10.1007/s12035-018-1397-x.
  • Muller-Nedebock AC, Brennan RR, Venter M, et al. The unresolved role of mitochondrial DNA in parkinson's disease: an overview of published studies, their limitations, and future prospects. Neurochem Int. 2019;129:104495. doi:10.1016/j.neuint.2019.104495.
  • Alexiou A, Nizami B, Khan FI, et al. Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci. 2018;19(9):850–857. doi:10.2174/1389203718666170810150151.
  • de Oliveira LG, Angelo YS, Iglesias AH, et al. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12:624919. doi:10.3389/fimmu.2021.624919.
  • Peng J, Wang H, Gong Z, et al. Idebenone attenuates cerebral inflammatory injury in ischemia and reperfusion via dampening NLRP3 inflammasome activity. Mol Immunol. 2020;123:74–87. doi:10.1016/j.molimm.2020.04.013.
  • Shevtsova EF, Vinogradova DV, Neganova ME, et al. Mitochondrial permeability transition pore as a suitable targ e t for neuroprotective agents against Alzheimer's disease. CNS Neurol Disord Drug Targets. 2017;16(6):677–685.
  • Stavropoulos F, Sargiannidou I, Potamiti L, et al. Aberrant mitochondrial dynamics and exacerbated response to neuroinflammation in a novel mouse model of CMT2A. Int J Mol Sci. 2021;22(21):11569.
  • Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer's disease: cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis. J Cell Physiol. 2019;234(6):8094–8112. doi:10.1002/jcp.27588.
  • Wenzel TJ, Ranger AL, McRae SA, et al. Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. J Neuroimmunol. 2021;353:577496. doi:10.1016/j.jneuroim.2021.577496.
  • Fu MH, Chen IC, Lee CH, et al. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. J Neuroinflammation. 2019;16(1):224. doi:10.1186/s12974-019-1623-0.
  • Jaturapatporn D, Isaac MG, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer's disease. Cochrane Database Syst Rev. 2012;2:CD006378. doi:10.1002/14651858.CD006378.pub2.
  • Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. Clin Biochem. 2019;72:87–89. doi:10.1016/j.clinbiochem.2019.04.001.
  • Yu Y, Shen Q, Lai Y, et al. Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol. 2018;9:386. doi:10.3389/fphar.2018.00386.
  • Niu TT, Yin H, Xu BL, et al. Protective effects of ginkgolide on a cellular model of Alzheimer's disease via suppression of the NF-κB signaling pathway. Appl Biochem Biotechnol. 2022;194(6):2448–2464. doi:10.1007/s12010-022-03828-5.
  • Li J, Huang Q, Chen J, et al. Neuroprotective potentials of panax ginseng against Alzheimer's disease: a review of preclinical and clinical evidences. Front Pharmacol. 2021;12:688490. doi:10.3389/fphar.2021.688490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.