93
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Role of Long Non-coding RNA in Nerve Regeneration

, , , , , & show all
Received 06 Feb 2023, Accepted 02 Nov 2023, Published online: 20 Nov 2023

References

  • Chu X-L, Song X-Z, Li Q, et al. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022;17(10):2185–2193. doi:10.4103/1673-5374.335823.
  • Min Q, Parkinson DB, Dun XP. Migrating schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2):235–254. doi:10.1002/glia.23892.
  • Juckett L, Saffari TM, Ormseth B, et al. The effect of electrical stimulation on nerve regeneration following peripheral nerve injury. Biomolecules. 2022;12(12):1856. doi:10.3390/biom12121856.
  • Chen P, Piao X, Bonaldo P. Role of macrophages in wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130(5):605–618. doi:10.1007/s00401-015-1482-4.
  • Chen S, Liu D, Zhou Z, et al. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27(1):122. doi:10.1186/s10020-021-00386-0.
  • Zhong Y, Cai X, Ding L, et al. Nrf2 inhibits the progression of parkinson’s disease by upregulating AABR07032261.5 to repress pyroptosis. J Inflamm Res. 2022;15:669–685. doi:10.2147/JIR.S345895.
  • Lacinova L. Electrophysiology of nociception: understanding of signaling pathways forms a basis for potential treatment. Pflugers Arch. 2022;474(4):365–366. doi:10.1007/s00424-022-02679-7.
  • Cai J, Yan Y, Zhang D, et al. Silencing of lncRNA Gm14461 alleviates pain in trigeminal neuralgia through inhibiting astrocyte activation. IUBMB Life. 2020;72(12):2663–2671. doi:10.1002/iub.2395.
  • Dong Y, Zhang X. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med. 2021;34(19):3234–3245. doi:10.1080/14767058.2020.1815700.
  • Wang Z, He J, Bach D-H, et al. Induction of m(6)a methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022;41(1):4. doi:10.1186/s13046-021-02209-w.
  • Zhou X, Shen S, Cao L, et al. Long Non-Coding RNA X-Inactive specific transcript (LncRNA xist) improves the repair of nerve function in spinal cord injury models via targeting CXC motif chemokine receptor 4 (CXCR4) in bone mesenchymal stem cells (BMSCs). j Biomater Tissue Eng. 2022;12(7):1348–1355. doi:10.1166/jbt.2022.3047.
  • Mu C, Wang R, Li T, et al. Long Non-Coding RNAs (lncRNAs) of sea cucumber: large-Scale prediction, expression profiling, Non-Coding network construction, and lncRNA-microRNA-Gene interaction analysis of lncRNAs in apostichopus japonicus and holothuria glaberrima during LPS challenge and radial organ complex regeneration. Mar Biotechnol (NY). 2016;18(4):485–499. doi:10.1007/s10126-016-9711-y.
  • Li K, et al. Insights into the functions of LncRNAs in drosophila. Int J Mol Sci. 2019;20(18):4646.
  • Li M, Liu L. Neural functions of long noncoding RNAs in drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015;201(9):921–926. doi:10.1007/s00359-014-0937-8.
  • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–1789. doi:10.1101/gr.132159.111.
  • Sharma H, Carninci P. The secret life of lncRNAs: conserved, yet not conserved. Cell. 2020;181(3):512–514. doi:10.1016/j.cell.2020.04.012.
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. doi:10.1016/j.cell.2018.01.011.
  • Shao L-L, Jiang Y-H, Jiang L-Y, et al. Long non-coding RNA and mRNA analysis of ang II-induced neuronal dysfunction. Mol Biol Rep. 2019;46(3):3233–3246. doi:10.1007/s11033-019-04783-x.
  • Mews P, Calipari ES, Day J, et al. From circuits to chromatin: the emerging role of epigenetics in mental health. J Neurosci. 2021;41(5):873–882. doi:10.1523/JNEUROSCI.1649-20.2020.
  • Statello L, Guo C-J, Chen L-L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi:10.1038/s41580-020-00315-9.
  • Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.
  • Magill ST, Cambronne XA, Luikart BW, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010;107(47):20382–20387. doi:10.1073/pnas.1015691107.
  • Yang L-X, Yang L-K, Zhu J, et al. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res. 2019;14(4):632–641. doi:10.4103/1673-5374.247467.
  • Li P, Jia Y, Tang W, et al. Roles of non-coding RNAs in Central nervous system axon regeneration. Front Neurosci. 2021;15:630633. doi:10.3389/fnins.2021.630633.
  • Li Z, Li X, Jian W, et al. Roles of long non-coding RNAs in the development of chronic pain. Front Mol Neurosci. 2021;14:760964. doi:10.3389/fnmol.2021.760964.
  • Modrak M, Talukder MAH, Gurgenashvili K, et al. Peripheral nerve injury and myelination: potential therapeutic strategies. J Neurosci Res. 2020;98(5):780–795. doi:10.1002/jnr.24538.
  • Yao C, Yu B. Role of long noncoding RNAs and circular RNAs in nerve regeneration. Front Mol Neurosci. 2019;12:165. doi:10.3389/fnmol.2019.00165.
  • Liu M, Li P, Jia Y, et al. Role of non-coding RNAs in axon regeneration after peripheral nerve injury. Int J Biol Sci. 2022;18(8):3435–3446. doi:10.7150/ijbs.70290.
  • Zhou Z, Qi D, Gan Q, et al. Studies on the regulatory roles and related mechanisms of lncRNAs in the nervous system. Oxid Med Cell Longev. 2021;2021:6657944–6657912. doi:10.1155/2021/6657944.
  • Yu B, Zhou S, Yi S, et al. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol. 2015;134:122–139. doi:10.1016/j.pneurobio.2015.09.006.
  • Liau W-S, Samaddar S, Banerjee S, et al. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol. 2021;18(7):1025–1036. doi:10.1080/15476286.2020.1868165.
  • Barry G, Briggs JA, Vanichkina DP, et al. The long non-coding RNA gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry. 2014;19(4):486–494. doi:10.1038/mp.2013.45.
  • Paterson C, Cumming B, Law AJ. Temporal dynamics of the Neuregulin-ErbB network in the murine prefrontal cortex across the lifespan. Cereb Cortex. 2020;30(5):3325–3339. doi:10.1093/cercor/bhz312.
  • Sarangdhar MA, Chaubey D, Bhatt A, et al. A novel long non-coding RNA, durga modulates dendrite density and expression of kalirin in zebrafish. Front Mol Neurosci. 2017;10:95. doi:10.3389/fnmol.2017.00095.
  • You M, Rong R, Zeng Z, et al. Transneuronal degeneration in the brain during glaucoma. Front Aging Neurosci. 2021;13:643685. doi:10.3389/fnagi.2021.643685.
  • Schirmer L, Velmeshev D, Holmqvist S, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573(7772):75–82. doi:10.1038/s41586-019-1404-z.
  • Ang CE, Trevino AE, Chang HY. Diverse lncRNA mechanisms in brain development and disease. Curr Opin Genet Dev. 2020;65:42–46. doi:10.1016/j.gde.2020.05.006.
  • Deng Z, Ou H, Ren F, et al. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res. 2020;53(1):38. doi:10.1186/s40659-020-00304-4.
  • Sun X, et al. Regulatory mechanism miR-302a-3p/E2F1/SNHG3 axis in nerve repair post cerebral ischemic stroke. Curr Neurovasc Res. 2021;18(5):515–524.
  • Cao Y, Pan L, Zhang X, et al. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab Brain Dis. 2020;35(8):1361–1369. doi:10.1007/s11011-020-00607-1.
  • Huang D, Cao Y, Zu T, et al. Interference with long noncoding RNA SNHG3 alleviates cerebral ischemia-reperfusion injury by inhibiting microglial activation. J Leukoc Biol. 2022;111(4):759–769. doi:10.1002/JLB.1A0421-190R.
  • Li J, Lv H, Che YQ. Long non-coding RNA Gas5 potentiates the effects of microRNA-21 downregulation in response to ischaemic brain injury. Neuroscience. 2020;437:87–97. doi:10.1016/j.neuroscience.2020.01.014.
  • Liu X, Hou L, Huang W, et al. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci. 2016;10:201. doi:10.3389/fncel.2016.00201.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. doi:10.1016/S0140-6736(14)61393-3.
  • Quan Y, Wang J, Wang S, et al. Association of the plasma long non-coding RNA MEG3 with parkinson’s disease. Front Neurol. 2020;11:532891. doi:10.3389/fneur.2020.532891.
  • Honarmand Tamizkar K, Gorji P, Gholipour M, et al. Parkinson’s disease is associated with dysregulation of circulatory levels of lncRNAs. Front Immunol. 2021;12:763323. doi:10.3389/fimmu.2021.763323.
  • Zhang L-M, Wang M-H, Yang H-C, et al. Dopaminergic neuron injury in parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/alpha-synuclein pathway. Aging (Albany NY). 2019;11(21):9264–9279. doi:10.18632/aging.102330.
  • Liu WQ, et al. Effects of long non-coding RNA NEAT1 on sepsis-induced brain injury in mice via NF-kappaB. Eur Rev Med Pharmacol Sci. 2019;23(9):3933–3939.
  • Chai W-N, Wu Y-F, Wu Z-M, et al. Neat1 decreases neuronal apoptosis after oxygen and glucose deprivation. Neural Regen Res. 2022;17(1):163–169. doi:10.4103/1673-5374.314313.
  • Cui Y, Yin Y, Xiao Z, et al. LncRNA Neat1 mediates miR-124-induced activation of wnt/beta-catenin signaling in spinal cord neural progenitor cells. Stem Cell Res Ther. 2019;10(1):400. doi:10.1186/s13287-019-1487-3.
  • Nan A, Zhou X, Chen L, et al. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget. 2016;7(1):112–124. doi:10.18632/oncotarget.6590.
  • Yao Y, Wang X, Gao J. LncRNA KCNQ1OT1 sponges miR-206 to ameliorate neural injury induced by anesthesia via up-Regulating BDNF. Drug Des Devel Ther. 2020;14:4789–4800. doi:10.2147/DDDT.S256319.
  • Hu X, Hu X, Huang G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats. J Cell Biochem. 2019;120(10):18209–18218. doi:10.1002/jcb.29127.
  • Tajiri N, Acosta SA, Shahaduzzaman M, et al. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci. 2014;34(1):313–326. doi:10.1523/JNEUROSCI.2425-13.2014.
  • Li D, Yang T, Shao C, et al. LncRNA MIAT activates vascular endothelial growth factor a through RAD21 to promote nerve injury repair in acute spinal cord injury. Mol Cell Endocrinol. 2021;528:111244. doi:10.1016/j.mce.2021.111244.
  • Zhang Q, Zhou L, Xie H, et al. HAGLR aggravates neuropathic pain and promotes inflammatory response and apoptosis of lipopolysaccharide-treated SH-SY5Y cells by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome. Neurochem Int. 2021;145:105001. doi:10.1016/j.neuint.2021.105001.
  • Zhang Z, Li X, Chen F, et al. Downregulation of LncRNA Gas5 inhibits apoptosis and inflammation after spinal cord ischemia-reperfusion in rats. Brain Res Bull. 2021;168:110–119. doi:10.1016/j.brainresbull.2020.12.005.
  • Allen NJ, Lyons DA. Glia as architects of Central nervous system formation and function. Science. 2018;362(6411):181–185. doi:10.1126/science.aat0473.
  • Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci. 2020;21(3):139–152. doi:10.1038/s41583-020-0263-9.
  • Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312–325. doi:10.1038/s41593-020-00783-4.
  • Wang H, Zheng X, Jin J, et al. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci. 2020;27(1):40. doi:10.1186/s12929-020-00635-0.
  • Xia X, Niu H, Ma Y, et al. LncRNA CCAT1 protects astrocytes against OGD/R-Induced damage by targeting the miR-218/NFAT5-Signaling axis. Cell Mol Neurobiol. 2020;40(8):1383–1393. doi:10.1007/s10571-020-00824-3.
  • Jiang ZS, Zhang JR. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol. 2018;120(Pt A):66–72. doi:10.1016/j.ijbiomac.2018.08.002.
  • Pekny M, Wilhelmsson U, Tatlisumak T, et al. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett. 2019;689:45–55. doi:10.1016/j.neulet.2018.07.021.
  • Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275 Pt 3Pt 3(0 3):305–315. doi:10.1016/j.expneurol.2015.03.020.
  • Wei H, Wu X, You Y, et al. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep. 2021;34(5):108721. doi:10.1016/j.celrep.2021.108721.
  • Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke. Front Immunol. 2020;11:294. doi:10.3389/fimmu.2020.00294.
  • He D, Wang J, Lu Y, et al. lncRNA functional networks in oligodendrocytes reveal Stage-Specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron. 2017;93(2):362–378. doi:10.1016/j.neuron.2016.11.044.
  • Zeng Z, Yao J, Zhong J, et al. The role of the lncRNA-LRCF in Propofol-Induced oligodendrocyte damage in neonatal mouse. Neurochem Res. 2021;46(4):778–791. doi:10.1007/s11064-020-03205-w.
  • Khani-Habibabadi F, Zare L, Sahraian MA, et al. Hotair and Malat1 long noncoding RNAs regulate bdnf expression and oligodendrocyte precursor cell differentiation. Mol Neurobiol. 2022;59(7):4209–4222. doi:10.1007/s12035-022-02844-0.
  • Masuda T, Amann L, Sankowski R, et al. Novel hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21(7):802–815. doi:10.1038/s41590-020-0707-4.
  • Yu F, Wang Y, Stetler AR, et al. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther. 2022;28(9):1279–1293. doi:10.1111/cns.13899.
  • Wan P, Su W, Zhang Y, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27(1):176–191. doi:10.1038/s41418-019-0351-4.
  • Cai L-J, Tu L, Huang X-M, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in parkinson’s disease. Mol Brain. 2020;13(1):130. doi:10.1186/s13041-020-00656-8.
  • Wang LQ, Zhou HJ. LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep. 2018;8(1):8346. doi:10.1038/s41598-018-26421-5.
  • Zhang J, Yang Y, Zhou C, et al. LncRNA miR-17-92a-1 cluster host gene (MIR17HG) promotes neuronal damage and microglial activation by targeting the microRNA-153-3p/alpha-synuclein axis in parkinson’s disease. Bioengineered. 2022;13(2):4493–4516. doi:10.1080/21655979.2022.2033409.
  • Gu E, Pan W, Chen K, et al. LncRNA H19 regulates lipopolysaccharide (LPS)-induced apoptosis and inflammation of BV2 microglia cells through targeting miR-325-3p/NEUROD4 axis. J Mol Neurosci. 2021;71(6):1256–1265. doi:10.1007/s12031-020-01751-0.
  • Li X, Sui Y. Valproate improves Middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/akt axis. Brain Res. 2020;1747:147039. doi:10.1016/j.brainres.2020.147039.
  • Liu N, Sun H, Li X, et al. Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting "M2" microglia polarization. Brain Res Bull. 2021;171:91–102. doi:10.1016/j.brainresbull.2021.03.004.
  • Curcio M, Bradke F. Axon regeneration in the Central nervous system: facing the challenges from the Inside. Annu Rev Cell Dev Biol. 2018;34(1):495–521. doi:10.1146/annurev-cellbio-100617-062508.
  • Mao P, Li CR, Zhang SZ, et al. Transcriptomic differential lncRNA expression is involved in neuropathic pain in rat dorsal root ganglion after spared sciatic nerve injury. Braz J Med Biol Res. 2018;51(10):e7113. doi:10.1590/1414-431X20187113.
  • Yao C, Wang J, Zhang H, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci. 2015;42(1):1718–1725. doi:10.1111/ejn.12966.
  • Yu B, Zhou S, Hu W, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett. 2013;534:117–122. doi:10.1016/j.neulet.2012.12.014.
  • Liu X, et al. Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol. 2019;234(9):16357–16366.
  • Han X, Xu J, Chen Z, et al. Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system. Exp Neurol. 2022;356:114157. doi:10.1016/j.expneurol.2022.114157.
  • Wang D, Zheng T, Ge X, et al. Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Exp Neurol. 2022;352:114025. doi:10.1016/j.expneurol.2022.114025.
  • Yin G, Peng Y, Lin Y, et al. Long non-coding RNA MSTRG.24008.1 regulates the regeneration of the sciatic nerve via the miR-331-3p-NLRP3/MAL axis. Front Cell Dev Biol. 2021;9:641603. doi:10.3389/fcell.2021.641603.
  • Merlini E, Coleman MP, Loreto A. Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci. 2022;45(1):53–63. doi:10.1016/j.tins.2021.10.014.
  • Li Y, Cai M, Feng Y, et al. Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats. Dev Neurobiol. 2022;82(1):98–111. doi:10.1002/dneu.22861.
  • Wang D, Chen Y, Liu M, et al. The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. J Biol Chem. 2020;295(25):8374–8386. doi:10.1074/jbc.RA119.011917.
  • Zhang C, Gao R, Zhou R, et al. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci. 2022;15:1037929. doi:10.3389/fnmol.2022.1037929.
  • Zhao X, Tang Z, Zhang H, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 2013;16(8):1024–1031. doi:10.1038/nn.3438.
  • Dou L, Lin H, Wang K, et al. Long non-coding RNA CCAT1 modulates neuropathic pain progression through sponging miR-155. Oncotarget. 2017;8(52):89949–89957. doi:10.18632/oncotarget.21192.
  • Zhang Z, Sun X, Zhao G, et al. LncRNA embryonic stem cells expressed 1 (Lncenc1) is identified as a novel regulator in neuropathic pain by interacting with EZH2 and downregulating the expression of Bai1 in mouse microglia. Exp Cell Res. 2021;399(1):112435. doi:10.1016/j.yexcr.2020.112435.
  • Du S, Wu S, Feng X, et al. A nerve injury-specific long noncoding RNA promotes neuropathic pain by increasing Ccl2 expression. J Clin Invest. 2022;132(13):e153563.
  • Ciotu CI, Kistner K, Kaindl U, et al. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia. 2023;71(4):945–956. doi:10.1002/glia.24316.
  • Zhang R, Chen Q, Huang L, et al. Single-cell analyses reveal the differentiation shifts of schwann cells in neonatal rat sciatic nerves. J Cell Physiol. 2022;237(1):637–646. doi:10.1002/jcp.30533.
  • Nocera G, Jacob C. Mechanisms of schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020;77(20):3977–3989. doi:10.1007/s00018-020-03516-9.
  • Qian T, Fan C, Liu Q, et al. Systemic functional enrichment and ceRNA network identification following peripheral nerve injury. Mol Brain. 2018;11(1):73. doi:10.1186/s13041-018-0421-4.
  • Wu G, Li X, Li M, et al. Long non-coding RNA MALAT1 promotes the proliferation and migration of schwann cells by elevating BDNF through sponging miR-129-5p. Exp Cell Res. 2020;390(1):111937. doi:10.1016/j.yexcr.2020.111937.
  • Gao L, Feng A, Yue P, et al. LncRNA BC083743 promotes the proliferation of schwann cells and axon regeneration through miR-103-3p/BDNF after sciatic nerve crush. J Neuropathol Exp Neurol. 2020;79(10):1100–1114. doi:10.1093/jnen/nlaa069.
  • Pan B, Shi Z-J, Yan J-Y, et al. Long non-coding RNA NONMMUG014387 promotes schwann cell proliferation after peripheral nerve injury. Neural Regen Res. 2017;12(12):2084–2091. doi:10.4103/1673-5374.221168.
  • Chen Y, Fan Z, Dong Q. LncRNA SNHG16 promotes schwann cell proliferation and migration to repair sciatic nerve injury. Ann Transl Med. 2021;9(16):1349–1349. doi:10.21037/atm-21-3971.
  • Yao C, Wang Q, Wang Y, et al. Loc680254 regulates schwann cell proliferation through Psrc1 and Ska1 as a microRNA sponge following sciatic nerve injury. Glia. 2021;69(10):2391–2403. doi:10.1002/glia.24045.
  • Yao C, Chen Y, Wang J, et al. LncRNA BC088259 promotes schwann cell migration through vimentin following peripheral nerve injury. Glia. 2020;68(3):670–679. doi:10.1002/glia.23749.
  • Yao C, Wang Y, Zhang H, et al. lncRNA TNXA-PS1 modulates schwann cells by functioning as a competing endogenous RNA following nerve injury. J Neurosci. 2018;38(29):6574–6585. doi:10.1523/JNEUROSCI.3790-16.2018.
  • Zhou L, Yu X, Guo Y, et al. LncRNA RMRP knockdown promotes proliferation and migration of schwann cells by mediating the miR-766-5p/CAND1 axis. Neurosci Lett. 2022;770:136440. doi:10.1016/j.neulet.2021.136440.
  • Ma Y, Zhai D, Zhang W, et al. Down-regulation of long non-coding RNA MEG3 promotes schwann cell proliferation and migration and repairs sciatic nerve injury in rats. J Cell Mol Med. 2020;24(13):7460–7469. doi:10.1111/jcmm.15368.
  • Zhang Y, Zhu Z, Liu X, et al. Integrated analysis of long noncoding RNAs and mRNA expression profiles reveals the potential role of lncRNAs in early stage of post-peripheral nerve injury in Sprague-Dawley rats. Aging (Albany NY). 2021;13(10):13909–13925. doi:10.18632/aging.202989.
  • Azimi T, Ghafouri-Fard S, Badrlou E, et al. Abnormal expression of NF-kappaB-related transcripts in blood of patients with inflammatory peripheral nerve disorders. Metab Brain Dis. 2021;36(8):2369–2376. doi:10.1007/s11011-021-00778-5.
  • Martinez-Moreno M, O’Shea TM, Zepecki JP, et al. Regulation of peripheral myelination through transcriptional buffering of Egr2 by an antisense long non-coding RNA. Cell Rep. 2017;20(8):1950–1963. doi:10.1016/j.celrep.2017.07.068.
  • Feng Y-M, Shao J, Cai M, et al. Long noncoding RNA H19 regulates degeneration and regeneration of injured peripheral nerves. Neural Regen Res. 2023;18(8):1847–1851. doi:10.4103/1673-5374.363182.
  • Gu Y, Lin Y, Li M, et al. An analysis of lncRNA-miRNA-mRNA networks to investigate the effects of HDAC4 inhibition on skeletal muscle atrophy caused by peripheral nerve injury. Ann Transl Med. 2022;10(9):516–516. doi:10.21037/atm-21-6512.
  • Liu Q, Deng J, Qiu Y, et al. Non-coding RNA basis of muscle atrophy. Mol Ther Nucleic Acids. 2021;26:1066–1078. doi:10.1016/j.omtn.2021.10.010.
  • Xiang Y, Dai J, Xu L, et al. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci. 2021;287:120117. doi:10.1016/j.lfs.2021.120117.
  • Zhang Y, Li Y, Hu Q, et al. The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. Nat Cell Biol. 2020;22(11):1332–1345. doi:10.1038/s41556-020-00595-5.
  • Li Z, Cai B, Abdalla BA, et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J Cachexia Sarcopenia Muscle. 2019;10(2):391–410. doi:10.1002/jcsm.12374.
  • Zhang Z-K, Li J, Guan D, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle. 2018;9(3):613–626. doi:10.1002/jcsm.12281.
  • Zhang Z-K, Li J, Guan D, et al. Long noncoding RNA lncMUMA reverses established skeletal muscle atrophy following mechanical unloading. Mol Ther. 2018;26(11):2669–2680. doi:10.1016/j.ymthe.2018.09.014.
  • Zhu H, Wang L, Chen J, et al. Mechanisms underlying abnormal expression of lncRNA H19 in neonatal Hypoxic-Ischemic encephalopathy. Am J Perinatol. 2022;39(8):844–852. doi:10.1055/s-0040-1718947.
  • Wolska M, Jarosz-Popek J, Junger E, et al. Long non-coding RNAs as promising therapeutic approach in ischemic stroke: a comprehensive review. Mol Neurobiol. 2021;58(4):1664–1682. doi:10.1007/s12035-020-02206-8.
  • Peng J, Wu Y, Tian X, et al. High-Throughput sequencing and Co-Expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep. 2017;7(1):46577. doi:10.1038/srep46577.
  • Zhang X-M, Zeng L-N, Yang W-Y, et al. Inhibition of LncRNA vof-16 expression promotes nerve regeneration and functional recovery after spinal cord injury. Neural Regen Res. 2022;17(1):217–227. doi:10.4103/1673-5374.314322.
  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88(1):487–514. doi:10.1146/annurev-biochem-013118-111902.
  • Liang Y, Duan L, Lu J, et al. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11(7):3183–3195. doi:10.7150/thno.52570.
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi:10.1126/science.aau6977.
  • Xu Z, Chen Y, Ma L, et al. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther. 2022;30(10):3133–3154. doi:10.1016/j.ymthe.2022.01.046.
  • Dong R, Liu Y, Yang Y, et al. MSC-Derived Exosomes-Based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed Res Int. 2019;2019:6458237–6458212. doi:10.1155/2019/6458237.
  • Yin G, Lin Y, Wang P, et al. Upregulated lncARAT in schwann cells promotes axonal regeneration by recruiting and activating proregenerative macrophages. Mol Med. 2022;28(1):76. doi:10.1186/s10020-022-00501-9.
  • El Bassit G, Patel RS, Carter G, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCdeltaII in HT22 cells. Endocrinology. 2017;158(1):183–195. doi:10.1210/en.2016-1819.
  • Wang J, Cao B, Sun R, et al. Exosome-transported long non-coding ribonucleic acid H19 induces blood-brain barrier disruption in cerebral ischemic stroke via the H19/micro ribonucleic acid-18a/vascular endothelial growth factor axis. Neuroscience. 2022;500:41–51. doi:10.1016/j.neuroscience.2022.07.028.
  • Bai G, Jiang L, Meng P, et al. LncRNA Neat1 promotes regeneration after spinal cord injury by targeting miR-29b. J Mol Neurosci. 2021;71(6):1174–1184. doi:10.1007/s12031-020-01740-3.
  • Ye H, Chu X, Cao Z, et al. A novel targeted therapy system for cervical cancer: co-Delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int J Nanomedicine. 2021;16:1051–1066. doi:10.2147/IJN.S258316.
  • Ruan X, Li P, Cangelosi A, et al. A long non-coding RNA, lncLGR, regulates hepatic glucokinase expression and glycogen storage during fasting. Cell Rep. 2016;14(8):1867–1875. doi:10.1016/j.celrep.2016.01.062.
  • Yu Q, Qiu Y, Wang X, et al. Efficient siRNA transfer to knockdown a placenta specific lncRNA using RGD-modified nano-liposome: a new preeclampsia-like mouse model. Int J Pharm. 2018;546(1-2):115–124. doi:10.1016/j.ijpharm.2018.05.001.
  • Chang L, Wang G, Jia T, et al. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget. 2016;7(17):23988–24004. doi:10.18632/oncotarget.8115.
  • Raveendra BL, et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci U S A. 2018;115(43):E10197–E10205.
  • Li D, Zhang J, Wang M, et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat Commun. 2018;9(1):1726. doi:10.1038/s41467-018-04072-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.