104
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Oxyberberine an oxoderivative of berberine confers neuroprotective effects in controlled-cortical impact mouse model of traumatic brain injury

, , , , , , , & show all
Received 04 Jul 2023, Accepted 15 Nov 2023, Published online: 04 Dec 2023

References

  • Johnson WD, Griswold DP. Traumatic brain injury: a global challenge. Lancet Neurol. 2017;16(12):949–950. doi: 10.1016/S1474-4422(17)30362-9.
  • Wang X, Ji J, Fen L, et al. Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Inj. 2013;27(13–14):1617–1622. doi: 10.3109/02699052.2013.831130.
  • Xiong Y, Mahmood A, Chopp M. Neurorestorative treatments for traumatic brain injury. Discov Med. 2010;10:434–442.
  • Saxena MK, Taylor C, Billot L, et al. The effect of paracetamol on core body temperature in acute traumatic brain injury: a randomised, controlled clinical trial. PLoS One. 2015;10(12):e0144740. doi: 10.1371/journal.pone.0144740.
  • Bahraini NH, Breshears RE, Hernández TD, et al. Traumatic brain injury and posttraumatic stress disorder. Psychiatr Clin North Am. 2014;37(1):55–75. doi: 10.1016/j.psc.2013.11.002.
  • Shao F, Wang X, Wu H, et al. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci. 2022;14:825086. doi: 10.3389/fnagi.2022.825086.
  • Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates Middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 Cascades in rats. Metab Brain Dis. 2023;38(7):2339–2354. doi: 10.1007/s11011-023-01259-7.
  • Gao W, Zhao Z, Yu G, et al. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-$κ$B signaling pathway in experimental traumatic brain injury. Brain Res. 2015;1622:230–239. doi: 10.1016/j.brainres.2015.04.035.
  • Zhu J, Lu H, Guo C, et al. Berberine attenuates ischemia – reperfusion injury through inhibiting HMGB1 release and NF- $κ$ B nuclear translocation. Acta Pharmacol Sin. 2018;39:1–10. doi: 10.1038/s41401-018-0160-1.
  • Jia L, Liu J, Song Z, et al. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J Pharm Pharmacol. 2012;64(10):1510–1521. doi: 10.1111/j.2042-7158.2012.01529.x.
  • Shaik MG, Joshi SV, Akunuri R, et al. Small molecule inhibitors of NLRP3 inflammasome and GSK-3β in the management of traumatic brain injury: a review. Eur J Med Chem. 2023;259:115718. doi: 10.1016/j.ejmech.2023.115718.
  • Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for Central nervous system disorders. Phytother Res. 2010;24(3):317–324. doi: 10.1002/ptr.2968.
  • Wang K, Feng X, Chai L, et al. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev. 2017;49(2):139–157. doi: 10.1080/03602532.2017.1306544.
  • Feng R, Shou JW, Zhao ZX, et al. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep. 2015;5:12155. doi: 10.1038/srep12155.
  • Li HM, Wang YY, Wang HD, et al. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol Sin. 2011;32(11):1364–1372. doi: 10.1038/aps.2011.102.
  • Ma JY, Feng R, Tan XS, et al. Excretion of berberine and its metabolites in oral administration in rats. J Pharm Sci. 2013;102(11):4181–4192. doi: 10.1002/jps.23718.
  • Liu YT, Hao HP, Xie HG, et al. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos. 2010;38(10):1779–1784. doi: 10.1124/dmd.110.033936.
  • Singh N, Sharma B. Toxicological effects of berberine and sanguinarine. Front Mol Biosci. 2018;5:21. doi: 10.3389/fmolb.2018.00021.
  • Li C, Ai G, Wang Y, et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-$κ$B pathway. Pharmacol Res. 2020;152:104603. doi: 10.1016/j.phrs.2019.104603.
  • Zhu J R, Lu H D, Guo C, et al. Berberine attenuates ischemia–reperfusion injury through inhibiting HMGB1 release and NF-$κ$B nuclear translocation. Acta Pharmacol Sin. 2018;39(11):1706–1715. doi: 10.1038/s41401-018-0160-1.
  • Singh S, Verma M, Malhotra M, et al. Cytotoxicity of alkaloids isolated from argemone mexicana on SW480 human Colon cancer cell line. Pharm Biol. 2016;54(4):740–745. doi: 10.3109/13880209.2015.1073334.
  • Chi JF, Chu SH, Lee CS, et al. Mechanical and electrophysiological effects of 8-oxoberberine (JKL1073A) on atrial tissue. Br J Pharmacol. 1996;118(3):503–512. doi: 10.1111/j.1476-5381.1996.tb15431.x.
  • Li CL, Tan LH, Wang YF, et al. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from rhizoma coptidis in vitro and in vivo. Phytomedicine. 2019;52:272–283. doi: 10.1016/j.phymed.2018.09.228.
  • Qadir I, Bazaz MR, Dar RM, et al. Cichorium intybus: a comprehensive review on its pharmacological activity and phytochemistry. Edible Plants Heal Dis. 2022;2:373–398. doi: 10.1007/978-981-16-4959-2_12.
  • Singh A, Singh S, Singh S, et al. Fungal spore germination inhibition by alkaloids dehydrocorydalmine and oxyberberine. J Plant Prot Res. 2009;49(3):287–289. doi: 10.2478/v10045-009-0046-9.
  • Zhao R, Wang B, Wang D, et al. Oxyberberine prevented Lipopolysaccharide-Induced acute lung injury through inhibition of mitophagy. Oxid Med Cell Longev. 2021;2021:6675264–6675212. doi: 10.1155/2021/6675264.
  • Rahman Z, Pasam T, Dandekar MP, Rishab. Binary classification model of machine learning detected altered gut integrity in controlled-cortical impact model of traumatic brain injury, Int J Neurosci. 2022:1–12. doi: 10.1080/00207454.2022.2095271.
  • Osier ND, Dixon CE. The controlled cortical impact model: applications, considerations for researchers, and future directions. Front Neurol. 2016;7:134. doi: 10.3389/fneur.2016.00134.
  • Ceña V, Játiva P. Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to Central nervous system diseases. Nanomedicine (Lond). 2018;13(13):1513–1516. doi: 10.2217/nnm-2018-0139.
  • Saleh SR, Abady MM, Nofal M, et al. Berberine nanoencapsulation attenuates hallmarks of scoplomine induced Alzheimer’s-like disease in rats. Curr Rev Clin Exp Pharmacol. 2021;16(2):139–154. doi: 10.2174/1574884715666200628112844.
  • Sharma S, Ifergan I, Kurz JE, et al. Intravenous immunomodulatory nanoparticle treatment for traumatic brain injury. Ann Neurol. 2020;87(3):442–455. doi: 10.1002/ana.25675.
  • Bonaccorso A, Gigliobianco MR, Pellitteri R, et al. Optimization of curcumin nanocrystals as promising strategy for nose-to-brain delivery application. Pharmaceutics. 2020;12(5):476. doi: 10.3390/pharmaceutics12050476.
  • Saha P, Kathuria H, Pandey MM. Nose-to-brain delivery of rotigotine redispersible nanosuspension: in vitro and in vivo characterization. J Drug Deliv Sci Technol. 2022;79:104049. doi: 10.1016/j.jddst.2022.104049.
  • Aghili-Mehrizi S, Williams E, Yan S, et al. Secondary mechanisms of neurotrauma: a closer look at the evidence. Diseases. 2022;10(2):30. doi: 10.3390/diseases10020030.
  • Leong Bin Abdullah MFI, Ng YP, Bin Sidi H. Depression and anxiety among traumatic brain injury patients in Malaysia. Asian J Psychiatr. 2018;37:67–70. doi: 10.1016/j.ajp.2018.08.017.
  • Wang B, Zeldovich M, Rauen K, Wu YJ. Covic A. Muller I Haagsma JA. Polinder S. Menon D. Asendorf T. Andelic N. Longitudinal analyses of the reciprocity of depression and anxiety after traumatic brain injury and its clinical implications, J Clin Med. 2021;10:5597. doi: 10.3390/jcm10235597.
  • Bazaz MR, Balasubramanian R, Monroy-Jaramillo N, et al. Linking the triad of telomere length, inflammation, and gut dysbiosis in the manifestation of depression. ACS Chem Neurosci. 2021;12(19):3516–3526. doi: 10.1021/acschemneuro.1c00457.
  • Algattas H, Huang JH. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci. 2014;15(1):309–341. doi: 10.3390/ijms15010309.
  • Wang H, Su X, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-$κ$B pathway after traumatic brain injury in the rat. Mediators Inflamm. 2011;2011:807142. doi: 10.1155/2011/807142.
  • Jung HS, Joo JD, Kim DW, et al. Effect of milrinone on the inflammatory response and NF-kB activation in renal ischemia-reperfusion injury in mice. Korean J Anesthesiol. 2014;66(2):136–142. doi: 10.4097/kjae.2014.66.2.136.
  • Chen X, Wu S, Chen C, et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-ΚB pathway following experimental traumatic brain injury. J Neuroinflammation. 2017;14(1):143. doi: 10.1186/s12974-017-0917-3.
  • Sun Z, Nyanzu M, Yang S, et al. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-$κ$ B pathways to improve functional outcomes in TBI mice. Oxid Med Cell Longev. 2020;2020:7879629–7879621. doi: 10.1155/2020/7879629.
  • Ohto U, Fukase K, Miyake K, et al. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A. 2012;109(19):7421–7426. doi: 10.1073/pnas.1201193109.
  • Release S. Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017. New York (NY): Maestro-Desmond Interoperability Tools, Schrödinger; 2017.
  • Dou Y, Huang R, Li Q, et al. Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/akt and Nrf2 signaling pathways. Biomed Pharmacother. 2021;137:111312. doi: 10.1016/j.biopha.2021.111312.
  • Gao C, Wang H, Wang T, et al. Platelet regulates neuroinflammation and restores blood–brain barrier integrity in a mouse model of traumatic brain injury. J Neurochem. 2020;154(2):190–204. doi: 10.1111/JNC.14983.
  • Parupalli R, Akunuri R, Spandana A, et al. Synthesis and biological evaluation of 1-Phenyl-4, 6-dihydrobenzo [b] pyrazolo [3, 4-d] azepin-5 (1H)-one/thiones as anticancer agents. Bioorg Chem. 2023;135:106478. doi: 10.1016/j.bioorg.2023.106478.
  • Cho N, Choi JH, Yang H, et al. Neuroprotective and anti-inflammatory effects of flavonoids isolated from rhus verniciflua in neuronal HT22 and microglial BV2 cell lines. Food Chem Toxicol. 2012;50(6):1940–1945. doi: 10.1016/j.fct.2012.03.052.
  • Saleh SR, Abady MM, Nofal M, et al. Berberine nanoencapsulation attenuates hallmarks of scoplomine induced Alzheimer’ s-like disease in rats. Curr Rev Clin Exp Pharmacol Formerly Curr Clin Pharmacol. 2020;16:139–154. doi: 10.2174/1574884715666200628112844.
  • Balasubramanian R, Bazaz MR, Pasam T, et al. Involvement of microbiome gut–brain axis in neuroprotective effect of quercetin in mouse model of repeated mild traumatic brain injury. Neuromolecular Med. 2022;25(2):242–254. doi: 10.1007/S12017-022-08732-Z.
  • Pleasant JM, Carlson SW, Mao H, et al. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28(11):2245–2262. doi: 10.1089/neu.2010.1499.
  • Lu DY, Tang CH, Chen YH, et al. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem. 2010;110(3):697–705. doi: 10.1002/jcb.22580.
  • Logsdon AF, Lucke-Wold BP, Nguyen L, et al. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury. Brain Res. 2016;1643:140–151. doi: 10.1016/j.brainres.2016.04.063.
  • Chen CG, Hung TH, Lee CY, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS One. 2014;9(12):e115694. doi: 10.1371/journal.pone.0115694.
  • Dou Y, Ai G, Huang R, et al. In vitro and in vivo hypoglycemia effect of oxyberberine, a novel HO-1 agonist: a renewed evidence linking HO-1 to diabetes mellitus. Phytomedicine. 2022;101:154135. doi: 10.1016/j.phymed.2022.154135.
  • Jin Y, Khadka DB, Cho WJ. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin Ther Pat. 2016;26(2):229–243. doi: 10.1517/13543776.2016.1118060.
  • Zhang X, Zhang X, Wang C, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-$κ$B expression, ameliorated BBB permeability. Brain Res. 2012;1459:61–70. doi: 10.1016/j.brainres.2012.03.065.
  • Khan J, Bashir S, Khan MA, et al. Fabrication and characterization of dexibuprofen nanocrystals using microchannel fluidic rector. Drug Des Devel Ther. 2018;12:2617–2626. doi: 10.2147/DDDT.S168522.
  • Zhou XQ, Zeng XN, Kong H, et al. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci Lett. 2008;447(1):31–36. doi: 10.1016/j.neulet.2008.09.064.
  • Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. J Neurotrauma. 2009;26(12):2383–2402. doi: 10.1089/neu.2009.1091.
  • Ando T, Xuan W, Xu T, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6(10):e26212. doi: 10.1371/journal.pone.0026212.
  • Rubovitch V, Zilberstein Y, Chapman J, et al. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci Rep. 2017;7(1):41269. doi: 10.1038/srep41269.
  • Chen CC, Hung TH, Wang YH, et al. Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-κb signaling after experimental traumatic brain injury. PLoS One. 2012;7(1):e30294. doi: 10.1371/journal.pone.0030294.
  • Huang R, Ai G, Zhong L, et al. Protective effects of oxyberberine in 5-Fluorouracil-Induced intestinal mucositis in the mice model. Evid Based Complement Alternat Med. 2022;2022:1238358. doi: 10.1155/2022/1238358.
  • Ogawa S, Chan J, Gustafsson J-A, et al. Estrogen increases locomotor activity in mice through estrogen receptor α: specificity for the type of activity. Endocrinology. 2003;144(1):230–239. doi: 10.1210/en.2002-220519.
  • Feng X, Sureda A, Jafari S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics. 2019;9(7):1923–1951. doi: 10.7150/thno.30787.
  • Li QP, Dou YX, Huang ZW, et al. Therapeutic effect of oxyberberine on obese non-alcoholic fatty liver disease rats. Phytomedicine. 2021;85:153550. doi: 10.1016/j.phymed.2021.153550.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.