80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of distribution and localization of proteins of the reelin signalling pathway in mesial temporal lobe epilepsy

, , , , , , & show all
Received 07 Jun 2022, Accepted 02 Dec 2023, Published online: 15 Dec 2023

References

  • Asadi-Pooya AA, Stewart GR, Abrams DJ, et al. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States. World Neurosurg. 2017;99:662–666. doi: 10.1016/j.wneu.2016.12.074.
  • Kaur M, Gupta T, Singla N, et al. Granule cell dispersion in mesial temporal lobe epilepsy. NSJA. 2020;5:7–11.
  • Lee GH, D’Arcangelo G. New insights into reelin-mediated signaling pathways. Front Cell Neurosci. 2016;10:122. doi: 10.3389/fncel.2016.00122.
  • Frotscher M, Haas CA, Förster E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb Cortex. 2003;13(6):634–640. doi: 10.1093/cercor/13.6.634.
  • D’Arcangelo G, Miao GG, Chen S-C, et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374(6524):719–723. doi: 10.1038/374719a0.
  • Pesold C, Impagnatiello F, Pisu M, et al. Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A. 1998;95(6):3221–3226. doi: 10.1073/pnas.95.6.3221.
  • Chai X, Fan L, Shao H, et al. Reelin induces branching of neurons and radial glial cells during corticogenesis. Cereb Cortex. 2015;25(10):3640–3653. doi: 10.1093/cercor/bhu216.
  • Frotscher M, Haas CA. 2017) Epilepsy-associated reelin dysfunction induces granule cell dispersion in the dentate gyrus. In Reference module in neuroscience and biobehavioral psychology. New York: Elsevier.
  • Chai X, Förster E, Zhao S, et al. Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci. 2009;29(1):288–299. doi: 10.1523/JNEUROSCI.2934-08.2009.
  • Wasser CR, Herz J. Reelin: neurodevelopmental architect and homeostatic regulator of excitatory synapses. J Biol Chem. 2017;292(4):1330–1338. doi: 10.1074/jbc.R116.766782.
  • Tinnes S, Schäfer MK, Flubacher A, et al. Epileptiform activity interferes with proteolytic processing of reelin required for dentate granule cell positioning. Faseb J. 2011;25(3):1002–1013. doi: 10.1096/fj.10-168294.
  • Tinnes S, Ringwald J, Haas CA. TIMP-1 inhibits the proteolytic processing of reelin in experimental epilepsy. Faseb J. 2013;27(7):2542–2552. doi: 10.1096/fj.12-224899.
  • Roberts RC, Xu L, Roche JK, et al. Ultrastructural localization of reelin in the cortex in post-mortem human brain. J Comp Neurol. 2005;482(3):294–308. doi: 10.1002/cne.20408.
  • Majores M, Eils J, Wiestler OD, et al. Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue samples and animal models. Epilepsy Res. 2004;60(2-3):173–178. doi: 10.1016/j.eplepsyres.2004.07.002.
  • Cheon KW, Lee H-S, Parhar IS, et al. Expression of the second isoform of gonadotrophin-releasing hormone (GnRH-II) in human endometrium throughout the menstrual cycle. Mol Hum Reprod. 2001;7(5):447–452. doi: 10.1093/molehr/7.5.447.
  • Thom M. Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520–543. doi: 10.1111/nan.12150.
  • Blümcke I, Kistner I, Clusmann H, et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol. 2009;117(5):535–544. doi: 10.1007/s00401-009-0512-5.
  • Haas CA, Frotscher M. Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res. 2010;200(2):141–149. doi: 10.1007/s00221-009-1948-5.
  • Haas CA, Dudeck O, Kirsch M, et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci. 2002;22(14):5797–5802. doi: 10.1523/JNEUROSCI.22-14-05797.2002.
  • Heinrich C, Nitta N, Flubacher A, et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci. 2006;26(17):4701–4713. doi: 10.1523/JNEUROSCI.5516-05.2006.
  • Müller MC, Osswald M, Tinnes S, et al. Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol. 2009;216(2):390–397. doi: 10.1016/j.expneurol.2008.12.029.
  • Gong C, Wang T-W, Huang HS, et al. Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci. 2007;27(8):1803–1811. doi: 10.1523/JNEUROSCI.3111-06.2007.
  • Korn MJ, Mandle QJ, Parent JM. Conditional disabled-1 deletion in mice alters hippocampal neurogenesis and reduces seizure threshold. Front Neurosci. 2016;10:63. doi: 10.3389/fnins.2016.00063.
  • Frotscher M, Zhao S, Wang S, et al. Reelin signaling inactivates cofilin to stabilize the cytoskeleton of migrating cortical neurons. Front Cell Neurosci. 2017;11:148. doi: 10.3389/fncel.2017.00148.
  • Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci. 2017;28(3):307–334. doi: 10.1515/revneuro-2016-0059.
  • Abraham H, Meyer G. Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus. 2003;13(6):715–727. doi: 10.1002/hipo.10125.
  • Orcinha C, Münzner G, Gerlach J, et al. Seizure-induced motility of differentiated dentate granule cells is prevented by the Central reelin fragment. Front Cell Neurosci. 2016;10:183. doi: 10.3389/fncel.2016.00183.
  • Liu TT, Li Y, Shu Y, et al. Ephrin‑b3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpine‑induced model of epilepsy. Int J Mol Med. 2018;41(6):3457–3467. doi: 10.3892/ijmm.2018.3543.
  • Duit S, Mayer H, Blake SM, et al. Differential functions of ApoER2 and very low density lipoprotein receptor in reelin signaling depend on differential sorting of the receptors. J Biol Chem. 2010;285(7):4896–4908. doi: 10.1074/jbc.M109.025973.
  • Reddy SS, Connor TE, Weeber EJ, et al. Similarities and differences in structure, expression, and functions of VLDLR and ApoER2. Mol. Neurodegener. 2011;6:1–10.
  • Bock HH, Jossin Y, Liu P, et al. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J Biol Chem. 2003;278(40):38772–38779. doi: 10.1074/jbc.M306416200.
  • Hack I, Hellwig S, Junghans D, et al. Divergent roles of ApoER2 and vldlr in the migration of cortical neurons. Development. 2007;134(21):3883–3891. doi: 10.1242/dev.005447.
  • Lussier AL, Weeber EJ, Rebeck GW. Reelin proteolysis affects signaling related to normal synapse function and neurodegeneration. Front Cell Neurosci. 2016;10:75. doi: 10.3389/fncel.2016.00075.
  • Acar G, Tanriover G, Acar F, et al. Increased expression of matrix metalloproteinase-9 in patients with temporal lobe epilepsy. Turk Neurosurg. 2015;25(5):749–756. doi: 10.5137/1019-5149.JTN.10738-14.0.
  • Jourquin J, Tremblay E, Décanis N, et al. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci. 2003;18(6):1507–1517. doi: 10.1046/j.1460-9568.2003.02876.x.
  • Szklarczyk A, Lapinska J, Rylski M, et al. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci. 2002;22(3):920–930. doi: 10.1523/JNEUROSCI.22-03-00920.2002.
  • Wilczynski GM, Konopacki FA, Wilczek E, et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol. 2008;180(5):1021–1035. doi: 10.1083/jcb.200708213.
  • Yin P, Yang L, Zhou H, et al. Matrix metalloproteinase-9 may be a potential therapeutic target in epilepsy. Med Hypotheses. 2011;76(2):184–186. doi: 10.1016/j.mehy.2010.09.013.
  • Murase S, Lantz CL, Kim E, et al. Matrix metalloproteinase-9 regulates neuronal circuit development and excitability. Mol Neurobiol. 2016;53(5):3477–3493. doi: 10.1007/s12035-015-9295-y.
  • Reinhard SM, Razak K, Ethell IM. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front Cell Neurosci. 2015;9:280. doi: 10.3389/fncel.2015.00280.
  • Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 2016;139(S2):91–114. doi: 10.1111/jnc.13415.
  • Rivera S, Tremblay E, Timsit S, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response. J Neurosci. 1997;17(11):4223–4235. doi: 10.1523/JNEUROSCI.17-11-04223.1997.
  • Duveau V, Madhusudan A, Caleo M, et al. Impaired reelin processing and secretion by cajal–retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus. 2011;21(9):935–944. doi: 10.1002/hipo.20793.
  • Bender RA, Zhou L, Wilkars W, et al. Roles of 17ß-estradiol involve regulation of reelin expression and synaptogenesis in the dentate gyrus. Cereb Cortex. 2010;20(12):2985–2995. doi: 10.1093/cercor/bhq047.
  • Kobow K, Jeske I, Hildebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol. 2009;68(4):356–364. doi: 10.1097/NEN.0b013e31819ba737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.