229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of Highly Water-Permeable Nanoporous Membrane by Arrangement of Regular Atomic Charges on the Pore-Wall: A Non-Equilibrium Molecular Dynamics Study

, &
Article: 2323728 | Received 14 Nov 2023, Accepted 21 Feb 2024, Published online: 18 Mar 2024

References

  • Araki T, Cruz-Silva R, Tejima S, Takeuchi K, Hayashi T, Inukai S, Noguchi T, Tanioka A, Kawaguchi T, Terrones M, et al. 2015. Molecular dynamics study of carbon nanotubes/polyamide reverse osmosis membranes: polymerization, structure, and hydration. ACS Appl Mater Interfaces. 7:24566–24575. doi: 10.1021/acsami.5b06248.
  • Bordin JR, Ilha AV, Côrtes PRB, da Silva Oliveira W, Pinheiro LA, de Moraes EE, Grison TG, Köhler MH. 2023. Molecular modeling of aquaporins and artificial transmembrane channels: a mini-review and perspective for plants. Theor Exp Plant Physiol. 2023:1–16. doi: 10.1007/s40626-023-00284-2.
  • Chan W-F, Chen HY, Surapathi A, Taylor MG, Shao X, Marand E, Johnson JK. 2013. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano. 7:5308–5319. doi: 10.1021/nn4011494.
  • Corry B. 2008. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B. 112:1427–1434. doi: 10.1021/jp709845u.
  • Corry B. 2011. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ Sci. 4:751–759. doi: 10.1039/c0ee00481b.
  • Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. 1988. Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 4:31–47. doi: 10.1002/prot.340040106.
  • de Groot BL, Grubmüller H. 2001. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 294:2353–2357. doi: 10.1126/science.1062459.
  • Dresselhaus MS, Gene D, Phaedon A. 2001. Carbon nanotubes: synthesis, structure, properties, and applications. Berlin: Springer.
  • Ewald PP. 1921. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 369:253–287. doi: 10.1002/andp.19213690304.
  • Fan H, Gu J, Meng H, Knebel A, Caro J. 2018. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed Engl. 57:4083–4087. doi: 10.1002/anie.201712816.
  • Higuchi H, Miyagawa M, Takaba H. 2022. Solvent–solute interaction effect on permeation flux through forward osmosis membranes investigated by non-equilibrium molecular dynamics. Membranes. 12:1249. doi: 10.3390/membranes12121249.
  • Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG. 2004. Aligned multiwalled carbon nanotube membranes. Science. 303:62–65. doi: 10.1126/science.1092048.
  • Hirosawa F, Miyagawa M, Takaba H. 2023. High efficient CO2 separation at high pressure by grain-boundary-controlled CHA zeolite membrane investigated by non-equilibrium molecular dynamics. Membranes. 13:278. doi: 10.3390/membranes13030278.
  • Hirosawa F, Watanabe K, Miyagawa M, Takaba H. 2023. Direct evaluation of void effect on gas permeation in mixed matrix membrane by non-equilibrium molecular dynamics. J Membr Sci. 677:121594. doi: 10.1016/j.memsci.2023.121594.
  • Hummer G, Rasaiah JC, Noworyta JP. 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 414:188–190. doi: 10.1038/35102535.
  • Itoh Y, Chen S, Hirahara R, Konda T, Aoki T, Ueda T, Shimada I, Cannon JJ, Shao C, Shiomi J, et al. 2022. Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science. 376:738–743. doi: 10.1126/science.abd0966.
  • Kalra A, Garde S, Hummer G. 2003. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci U S A. 100:10175–10180. doi: 10.1073/pnas.1633354100.
  • Lin L-C, Choi J, Grossman JC. 2015. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem Commun. 51:14921–14924. doi: 10.1039/c5cc05969k.
  • Lin L-C, Grossman JC. 2015. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat Commun. 6:8335. doi: 10.1038/ncomms9335.
  • Liu J, Wang N, Yu LJ, Karton A, Li W, Zhang WX, Guo FY, Hou LL, Cheng QF, Jiang L, et al. 2017. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat Commun. 8:2011. doi: 10.1038/s41467-017-02198-5.
  • Majumder M, Chopra N, Andrews R, Hinds BJ. 2005. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature. 438:44–44. doi: 10.1038/438044a.
  • Meyyappan M. 2005. Carbon nanotubes: science and applications. Boca Raton, FL: CRC Press.
  • Nagumo R, Muraki Y, Iwata S, Mori H, Takaba H, Yamada H. 2016. Molecular dynamics simulation study on CO2 physical absorption mechanisms for ethylene-glycol-based solvents using free energy calculations. Ind Eng Chem Res. 55:8200–8206. doi: 10.1021/acs.iecr.6b01074.
  • Nicholls WD, Borg MK, Lockerby DA, Reese JM. 2012. Water transport through carbon nanotubes with defects. Mol Simul. 38:781–785. doi: 10.1080/08927022.2011.654205.
  • Rashed AO, Merenda A, Kondo T, Lima M, Razal J, Kong L, Huynh C, Dumée LF. 2021. Carbon nanotube membranes – strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol. 257:117929. doi: 10.1016/j.seppur.2020.117929.
  • Rathinavel S, Priyadharshini K, Panda D. 2021. A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B. 268:115095. doi: 10.1016/j.mseb.2021.115095.
  • Rizzuto C, Pugliese G, Bahattab MA, Aljlil SA, Drioli E, Tocci E. 2018. Multiwalled carbon nanotube membranes for water purification. Sep Purif Technol. 193:378–385. doi: 10.1016/j.seppur.2017.10.025.
  • Shaikh AR, Kamio E, Takaba H, Matsuyama H. 2015. Effects of water concentration on the free volume of amino acid ionic liquids investigated by molecular dynamics simulations. J Phys Chem B. 119:263–273. doi: 10.1021/jp5095239.
  • Sianipar M, Kim SH, Khoiruddin K, Iskandar F, Wenten IG. 2017. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7:51175–51198. doi: 10.1039/C7RA08570B.
  • Su P, Wang F, Li Z, Tang CY, Li W. 2020. Graphene oxide membranes: controlling their transport pathways. J Mater Chem A. 8:15319–15340. doi: 10.1039/D0TA02249G.
  • Takaba H, Hisabe T, Shimizu T, Alam MK. 2017. Molecular modeling of OH– transport in poly(arylene ether sulfone ketone)s containing quaternized ammonio-substituted fluorenyl groups as anion exchange membranes. J Membr Sci. 522:237–244. doi: 10.1016/j.memsci.2016.09.019.
  • Takaba H, Onumata Y, Nakao SI. 2007. Molecular simulation of pressure-driven fluid flow in nanoporous membranes. J Chem Phys. 127:54703–54709. doi: 10.1063/1.2749236.
  • Thebo KH, Qian X, Zhang Q, Chen L, Cheng H, Ren W. 2018. Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun. 9:1486. doi: 10.1038/s41467-018-03919-0.
  • Thomas M, Corry B. 2016. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philos Trans A Math Phys Eng Sci. 374:20150020. doi: 10.1098/rsta.2015.0020.
  • Wu W, Su J, Jia M, Zhong W, Li Z, Li W. 2019. Ultrastable sandwich graphene oxide hollow fiber membranes with confined interlayer spacing. J Mater Chem A. 7:13007–13011. doi: 10.1039/C9TA03236C.
  • Yoshioka T, Kotaka K, Nakagawa K, Shintani T, Wu H-C, Matsuyama H, Fujimura Y, Kawakatsu T. 2018. Molecular dynamics simulation study of polyamide membrane structures and RO/FO water permeation properties. Membranes. 8:127. doi: 10.3390/membranes8040127.
  • Yoshioka T, Tsuru T, Asaeda M. 2001. Molecular dynamics studies on gas permeation properties through microporous silica membranes. Sep Purif Technol. 25:441–449. doi: 10.1016/S1383-5866(01)00073-9.
  • Zhang C, Wu BH, Ma MQ, Wang Z, Xu ZK. 2019. Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem Soc Rev. 48:3811–3841. doi: 10.1039/C9CS00322C.
  • Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N. 2019. Controllable ion transport by surface-charged graphene oxide membrane. Nat Commun. 10:1253. doi: 10.1038/s41467-019-09286-8.
  • Zhang W, Zhang L, Zhao H, Li B, Ma H. 2018. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J Mater Chem A. 6:13331–13339. doi: 10.1039/C8TA04178D.
  • Zhou W, Wei M, Zhang X, Xu F, Wang Y. 2019. Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl Mater Interfaces. 11:16847–16854. doi: 10.1021/acsami.9b01883.