113
Views
0
CrossRef citations to date
0
Altmetric
Research papers

River bed degradation in a compound channel after base level fall

ORCID Icon, , , ORCID Icon, & ORCID Icon
Pages 144-157 | Received 03 Sep 2023, Accepted 05 Mar 2024, Published online: 22 Apr 2024

References

  • Begin, Z. B. (1987). ERFUS 6—A FORTRAN program for calculating the response of alluvial channels to baselevel lowering. Computers & Geosciences, 13(4), 389–398. https://doi.org/10.1016/0098-3004(87)90011-2
  • Begin, Z. B., Meyer, D. F., & Schumm, S. A. (1981). Development of longitudinal profiles of alluvial channels in response to base-level lowering. Earth Surface Processes and Landforms, 6(1), 49–68. https://doi.org/10.1002/esp.3290060106
  • Best, J. (2019). Anthropogenic stresses on the world's big rivers. Nature Geoscience, 12(1), 7–21. https://doi.org/10.1038/s41561-018-0262-x
  • Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47(4), 2–48. https://doi.org/10.1046/j.1365-3091.2000.00008.x
  • Bonneau, P. R., & Scott Snow, R. (1992). Character of hearwaters adjustment to base level drop, investigated by digital modeling. Geomorphology, 5(3–5), 475–487. https://doi.org/10.1016/0169-555X(92)90019-K
  • Bowman, D. (2023). Base-level Impact. Springer Nature.
  • Capart, H., Bellal, M., & Young, D.-L. (2007). Self-Similar evolution of semi-infinite alluvial channels with moving boundaries. Journal of Sedimentary Research, 77(1), 13–22. https://doi.org/10.2110/jsr.2007.009
  • Chen, L. K., & Chen, S. C. (2006). Retrogressive erosion and longitudinal profile evolution in noncohesive material. International Journal of Sediment Research, 21(2), 113–122.
  • Chin, C. O., Melville, B. W., & Raudkivi, A. J. (1994). Streambed armoring. Journal of Hydraulic Engineering, 120(8), 899–918. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(899)
  • Chu, C. C., & You, G. J. Y. (2021). Analytical One-dimensional conceptual model of channel evolution after Dam removal based on diffusion framework. Water Resources Research, 57(5), e2020WR028306. https://doi.org/10.1029/2020WR028306
  • Dente, E., Lensky, N. G., Morin, E., Dunne, T., & Enzel, Y. (2019). Sinuosity evolution along an incising channel: New insights from the Jordan River response to the Dead Sea level fall. Earth Surface Processes and Landforms, 44(3), 781–795. https://doi.org/10.1002/esp.4530
  • Edwards, B. L., Keim, R. F., Johnson, E. L., Hupp, C. R., Marre, S., & King, S. L. (2016). Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain. Geomorphology, 269, 149–159. https://doi.org/10.1016/j.geomorph.2016.06.037
  • Ethridge, F. G., Germanoski, D., Schumm, S. A., & Wood, L. J. (2005). The morphological and stratigraphical effects of base-level change: a review of experimental studies. Fluvial Sedimentology VII. Fluvial Sedimentology VII, 35, 211–241. https://doi.org/10.1002/9781444304350.ch13
  • Eyal, H., Dente, E., Itai, H., Enzel, Y., Dunne, T., & Lensky, N. G. (2019). Fluvial incision and coarse gravel redistribution across the modern Dead Sea shelf as a result of base-level fall. Earth Surface Processes and Landforms, 44(11), 2170–2185. https://doi.org/10.1002/esp.4640
  • Fan, N., Nie, R., Wang, Q., & Liu, X. (2016). Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake. Scientific Reports, 6(1). https://doi.org/10.1038/srep37108
  • Foley, M. M., Bellmore, J. R., O’Connor, J. E., Duda, J. J., East, A. E., Grant, G. E., Anderson, C. W., Bountry, J. A., Collins, M. J., Connolly, P. J., Craig, L. S., Evans, J. E., Greene, S. L., Magilligan, F. J., Magirl, C. S., Major, J. J., Pess, G. R., Randle, T. J., Shafroth, P. B., et al. (2017). Dam removal: Listening in. Water Resources Research, 53(7), 5229–5246. https://doi.org/10.1002/2017WR020457
  • Fu, H., Shan, Y., & Liu, C. (2023). A model for predicting the grain size distribution of an armor layer under clear water scouring. Journal of Hydrology, 623, 129842. https://doi.org/10.1016/j.jhydrol.2023.129842
  • Galay, V. J. (1983). Causes of river bed degradation. Water Resources Research, 19(5), 1057–1090. https://doi.org/10.1029/WR019i005p01057
  • Grimaud, J. L., Paola, C., & Voller, V. (2016). Experimental migration of knickpoints: influence of style of base-level fall and bed lithology. Earth Surface Dynamics, 4(1), 11–23. https://doi.org/10.5194/esurf-4-11-2016
  • Harvey, A. M. (2002). The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada. Geomorphology, 45(1-2), 67–87. https://doi.org/10.1016/S0169-555X(01)00190-8
  • Hassan, M. A., & Klein, M. (2002). Fluvial adjustment of the lower Jordan river to a drop in the dead Sea level. Geomorphology, 45(1-2), 21–33. https://doi.org/10.1016/S0169-555X(01)00187-8
  • Ikeda, S., Parker, G., & Kimura, Y. (1988). Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research, 24(5), 713–722. https://doi.org/10.1029/WR024i005p00713
  • Keulegan, G. H. (1938). Laws of turbulent flow in open channels. Journal of Research of the National Bureau of Standards, 21(6), 707. https://doi.org/10.6028/jres.021.039
  • Kondolf, G. M. (1997). Profile: Hungry water: Effects of dams and gravel mining on river channels. Environmental Management, 21(4), 533–551. https://doi.org/10.1007/s002679900048
  • Lane, E. W. (1956). The importance of fluvial morphology in hydraulic engineering. Shin Sabo, 1956(20), 23–26. https://doi.org/10.11475/sabo1948.1956.23
  • Leopold, L. B., & Bull, W. B. (1979). Base level, aggradation, and grade. Proceedings of the American Philosophical Society, 123(3), 168–202. https://doi.org/10.2307/986220
  • Li, F., Shan, Y., Huang, S., Liu, C., & Liu, X. (2021). Flow depth, velocity, and sediment motions in a straight widened channel with vegetated floodplains. Environmental Fluid Mechanics, 21(2), 483–501. https://doi.org/10.1007/s10652-021-09783-9
  • Liro, M. (2017). Dam-induced base-level rise effects on the gravel-bed channel planform. Catena, 153, 143–156. https://doi.org/10.1016/j.catena.2017.02.005
  • Liu, C., & Shan, Y. (2022). Impact of an emergent model vegetation patch on flow adjustment and velocity. Proceedings of the Institution of Civil Engineers – Water Management, 175(2), 55–66. https://doi.org/10.1680/jwama.20.00108
  • Liu, C., Shan, Y., Liu, X., & Yang, K. (2016). Method for assessing discharge in meandering compound channels. Proceedings of the Institution of Civil Engineers – Water Management, 169(1), 17–29. https://doi.org/10.1680/wama.14.00131
  • Ma, X., Wang, L., Nie, R., Yang, K., & Liu, X. (2019). Case study: model test on the effects of grade control datum drop on the upstream bed morphology in Shiting River. Water, 11(9), 1898. https://doi.org/10.3390/w11091898
  • Mackin, J. H. (1948). Concept of the graded river. Geological Society of America Bulletin, 59(5), 463–512. https://doi.org/10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2
  • Merritts, D. J., Vincent, K. R., & Wohl, E. E. (1994). Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. Journal of Geophysical Research: Solid Earth, 99(B7), 14031–14050. https://doi.org/10.1029/94JB00857
  • Nie, R., Liang, H., Melville, B. W., Shamseldin, A. Y., & Wang, L. (2023). Scour at river-crossing cylindrical structures in degrading channels. Journal of Hydraulic Engineering, 149(3), https://doi.org/10.1061/JHEND8.HYENG-13389
  • Nie, R., Wang, X., Liu, F., Wang, Q., Fan, N., & Liu, X. (2018). Study on fluvial processes of piedmont rivers damaged by strong earthquakes. Advanced Engineering Sciences, 50(3), 105–111. https://doi.org/10.15961/j.jsuese.201800351
  • Nordin, C. F. (1964). Study of channel erosion and sediment transport. Journal of the Hydraulics Division, 90(4), 173–192. https://doi.org/10.1061/JYCEAJ.0001064
  • Pan, Y., Liu, X., & Yang, K. (2023). Effect of base-level fall on riverbed evolution in a meandering channel. Journal of Yangtze River Scientific Research Institute, 40(3), 11–17. https://doi.org/10.11988/ckyyb.20211133
  • Pitlick, J., Marr, J., & Pizzuto, J. (2013). Width adjustment in experimental gravel-bed channels in response to overbank flows. Journal of Geophysical Research: Earth Surface, 118(2), 553–570. https://doi.org/10.1002/jgrf.20059
  • Qian, N., Zhang, R., & Zhou, Z. (1987). Fluvial processes study. China Science Publishing.
  • Schumm, S. A. (1993). River response to baselevel change: implications for sequence stratigraphy. The Journal of Geology, 101(2), 279–294. https://doi.org/10.1086/648221
  • Schumm, S. A., Harvey, M. D., & Watson, C. C. (1984). Incised channels: Morphology, dynamics, and control. Water Resources Publications.
  • Shan, Y., Huang, S., Liu, C., Guo, Y., & Yang, K. (2018). Prediction of the depth-averaged two-dimensional flow direction along a meander in compound channels. Journal of Hydrology, 565, 318–330. https://doi.org/10.1016/j.jhydrol.2018.08.004
  • Shan, Y., Yan, C., Liu, J., & Liu, C. (2023). Predicting velocity and turbulent kinetic energy inside an emergent Phragmites australis canopy with real morphology. Environmental Fluid Mechanics, 23(4), 943–963. https://doi.org/10.1007/s10652-023-09942-0
  • Snow, R. S., & Slingerland, R. L. (1987). Mathematical modeling of graded river profiles. The Journal of Geology, 95(1), 15–33. https://doi.org/10.1086/629104
  • Wang, L., Melville, B. W., Xu, Z., Shamseldin, A. Y., Wu, W., Wang, X., & Nie, R. (2022a). Massive riverbed erosion induced by inappropriate grade control: a case study in a large-scale compound channel. Journal of Hydrology, 612, 128313–128313. https://doi.org/10.1016/j.jhydrol.2022.128313
  • Wang, Y., Yang, Z., Liu, M., & Yu, M. (2022b). Numerical study of flow characteristics in compound meandering channels with vegetated floodplains. Physics of Fluids, 34(11), https://doi.org/10.1063/5.0122089
  • Weatherly, H., & Jakob, M. (2014). Geomorphic response of Lillooet River, British Columbia, to meander cutoffs and base level lowering. Geomorphology, 217, 48–60. https://doi.org/10.1016/j.geomorph.2014.04.002
  • Yoxall, W. H. (1969). The relationship between falling base level and lateral erosion in experimental streams. Geological Society of America Bulletin, 80(7), 1379–1384. https://doi.org/10.1130/0016-7606(1969)80[1379:TRBFBL]2.0.CO;2
  • Zheng, S., Li, S., Zhou, X., Fan, N., Cao, H., Nie, R., & Zeng, Y. (2023). Relationships between morphological quality and macroinvertebrate diversity in a degrading gravel-bed river following the magnitude 8.0 Wenchuan earthquake, China. Geomorphology, 438, 108821. https://doi.org/10.1016/j.geomorph.2023.108821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.