79
Views
0
CrossRef citations to date
0
Altmetric
Research papers

Application of ultrasonic waves to evaluate the rheological properties of non-Newtonian slurries: a preliminary study

, , , &
Pages 176-191 | Received 14 Nov 2023, Accepted 13 Mar 2024, Published online: 30 Apr 2024

References

  • Alsabaa, A., Gamal, H., Elkatatny, S., & Abdulraheem, A. (2021). New correlations for better monitoring the all-oil mud rheology by employing artificial neural networks. Flow Measurement and Instrumentation, 78, 101914. https://doi.org/10.1016/j.flowmeasinst.2021.101914
  • Angelone, J. P., González, N., Adarme, J., Rueda, S., Cristiano, K. L., Herrera, J. R., & Triana, D. A. (2019). Software to determine the viscosity and honey’s purity using a ball viscometer. Journal of Physics: Conference Series, 1386(1), 012120. https://doi.org/10.1088/1742-6596/1386/1/012120
  • Bassoullet, P., & Le Hir, P. (2007). In situ measurements of surficial mud strength: A new vane tester suitable for soft intertidal muds. Continental Shelf Research, 27(8), 1200–1205. https://doi.org/10.1016/j.csr.2005.10.007
  • Been, K., & Sills, G. C. (1981). Self-weight consolidation of soft soils: An experimental and theoretical study. Géotechnique, 31(4), 519–535. https://doi.org/10.1680/geot.1981.31.4.519
  • Burkov, S. I., Zolotova, O. P., & Sorokin, B. P. (2018). Analysis of the metal layer thickness influence on the dispersion characteristics of acoustic waves propagating in the layered piezoelectric structure “Me/AlN/Me/diamond”. Ultrasonics, 83, 188–193. https://doi.org/10.1016/j.ultras.2017.03.013
  • Chandrapala, J., Oliver, C., Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing – food quality assurance and food safety. Trends in Food Science & Technology, 26(2), 88–98. https://doi.org/10.1016/j.tifs.2012.01.010
  • Chung, C.-W., Popovics, J. S., & Struble, L. J. (2010). Using ultrasonic wave reflection to measure solution properties. Ultrasonics Sonochemistry, 17(1), 266–272. https://doi.org/10.1016/j.ultsonch.2009.07.004
  • Coussot, P., & Piau, J. M. (1994). On the behavior of fine mud suspensions. Rheologica Acta, 33(3), 175–184. https://doi.org/10.1007/BF00437302
  • Craig, M. J., Baas, J. H., Amos, K. J., Strachan, L. J., Manning, A. J., Paterson, D. M., Hope, J. A., Nodder, S. D., & Baker, M. L. (2019). Biomediation of submarine sediment gravity flow dynamics. Geology, 48(1), 72–76. https://doi.org/10.1130/G46837.1
  • Dankers, P. J. T., Sills, G. C., & Winterwerp, J. C. (2008). Chapter 18 On the hindered settling of highly concentrated mud-sand mixtures. In T. Kusuda, H. Yamanishi, J. Spearman, & J. Z. Gailani (Eds.), Proceedings in marine science (Vol. 9, pp. 255–274). Elsevier. https://doi.org/10.1016/S1568-2692(08)80020-4
  • Deng, B.-Q., Hu, Y., Guo, X., Dalrymple, R. A., & Shen, L. (2017). Numerical study on the dissipation of water waves over a viscous fluid-mud layer. Computers & Fluids, 158, 107–119. https://doi.org/10.1016/j.compfluid.2017.04.015
  • Deng, Z., He, Q., Manning, A. J., & Chassagne, C. (2023). A laboratory study on the behavior of estuarine sediment flocculation as function of salinity, EPS and living algae. Marine Geology, 459, 107029. https://doi.org/10.1016/j.margeo.2023.107029
  • Dixon, S., & Lanyon, B. (2005). Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system. Journal of Physics D: Applied Physics, 38(22), 4115–4125. https://doi.org/10.1088/0022-3727/38/22/016
  • Einstein, H. A., & Krone, R. B. (1962). Experiments to determine modes of cohesive sediment transport in salt water. Journal of Geophysical Research (1896–1977), 67(4), 1451–1461. https://doi.org/10.1029/JZ067i004p01451
  • Elder, D. (1985). Stress strain and strength behaviour of very soft soil sediment. University of Oxford.
  • Fettweis, M. (2008). Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements. Estuarine, Coastal and Shelf Science, 78(2), 426–436. https://doi.org/10.1016/j.ecss.2008.01.007
  • Fushimi, M., & Nara, T. (2021). Reconstruction of shear modulus and viscosity of biological tissues from displacement measurement. Measurement: Sensors, 18, 100187. https://doi.org/10.1016/j.measen.2021.100187
  • Gibson, R. E., England, G. L., & Hussey, M. J. L. (1967). The theory of one-dimensional consolidation of saturated clays: 1. Finite non-linear consildation of thin homogeneous layers. Géotechnique, 17(3), 261–273. https://doi.org/10.1680/geot.1967.17.3.261
  • Guo, C., He, Q., Guo, L., & Winterwerp, J. C. (2017). A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary. Estuarine, Coastal and Shelf Science, 191, 1–9. https://doi.org/10.1016/j.ecss.2017.04.001
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7), 667–692. https://doi.org/10.1061/JSFEAQ.0001760
  • Hsiao, S. V., & Shemdin, O. H. (1980). Interaction of ocean waves with a soft bottom. Journal of Physical Oceanography, 10(4), 605–610. https://doi.org/10.1175/1520-0485(1980)010<0605:IOOWWA>2.0.CO;2
  • Imai, G. (1981). Experimental studies on sedimentation mechanism and sediment formation of clay materials. Soils and Foundations, 21(1), 7–20. doi:10.3208/sandf1972.21.7
  • Kameda, J., & Morisaki, T. (2017). Sensitivity of clay suspension rheological properties to pH, temperature, salinity, and smectite-quartz ratio. Geophysical Research Letters, 44(19), 9615–9621. https://doi.org/10.1002/2017GL075334
  • Ko-Fei, L., & Mei, C. C. (1993). Long waves in shallow water over a layer of bingham-plastic fluid-mud—I. Physical aspects. International Journal of Engineering Science, 31(1), 125–144. https://doi.org/10.1016/0020-7225(93)90070-B
  • Kovacs, W. D., Seed, H. B., & Chan, C. K. (1971). Dynamic moduli and damping ratios for a soft clay. Journal of the Soil Mechanics and Foundations Division, 97(1), 59–75. https://doi.org/10.1061/JSFEAQ.0001542
  • Krone, R. B. (1963). A study of rheologic properties of estuarial sediments: Final report. Hydraulic engineering laboratory and sanitary engineering research laboratory, University of California.
  • Krymsky, G. F. (2019). Energy dissipation in a medium with turbulent viscosity and the hill vortex. Doklady Physics, 64(6), 269–270. https://doi.org/10.1134/S1028335819060065
  • Kulmyrzaev, A., & McClements, D. J. (2000). High frequency dynamic shear rheology of honey. Journal of Food Engineering, 45(4), 219–224. https://doi.org/10.1016/S0260-8774(00)00062-5
  • Lakes, R. (2009). Viscoelastic materials. Cambridge University Press. https://doi.org/10.1017/CBO9780511626722
  • Lawrence, T. J., Carr, S. J., Wheatland, J. A. T., Manning, A. J., & Spencer, K. L. (2022). Quantifying the 3D structure and function of porosity and pore space in natural sediment flocs. Journal of Soils and Sediments, 22(12), 3176–3188. https://doi.org/10.1007/s11368-022-03304-x
  • Lee, H. O., Luan, H., & Daut, D. G. (1992). Use of an ultrasonic technique to evaluate the rheological properties of cheese and dough. Journal of Food Engineering, 16(1), 127–150. https://doi.org/10.1016/0260-8774(92)90024-Z
  • Leong, T. S. H., Zhou, M., Zhou, D., Ashokkumar, M., & Martin, G. J. O. (2018). The formation of double emulsions in skim milk using minimal food-grade emulsifiers – A comparison between ultrasonic and high pressure homogenisation efficiencies. Journal of Food Engineering, 219, 81–92. https://doi.org/10.1016/j.jfoodeng.2017.09.018
  • Maa, J. P.-Y., & Mehta, A. J. (1988). Soft mud properties: Voigt model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 114(6), 765–770. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:6(765)
  • Maa, J. P.-Y., Sun, K.-J., & He, Q. (1997). Ultrasonic characterization of marine sediments: A preliminary study. Marine Geology, 141(1), 183–192. https://doi.org/10.1016/S0025-3227(97)00078-9
  • Malarkey, J., Baas, J. H., Hope, J. A., Aspden, R. J., Parsons, D. R., Peakall, J., Paterson, D. M., Schindler, R. J., Ye, L., & Lichtman, I. D. (2015). The pervasive role of biological cohesion in bedform development. Nature Communications, 6(1), 6257. https://doi.org/10.1038/ncomms7257
  • Mcdermott, I. R. (1992). Seismo-Acoustic investigations of consolidation phenomena. Bangor University.
  • Mehta, A. J. (2022). Introduction to hydraulics of fine sediment transport, an (Vol. 56). World scientific.
  • Mei, C. C., & Liu, K.-F. (1987). A bingham-plastic model for a muddy seabed under long waves. Journal of Geophysical Research: Oceans, 92(C13), 14581–14594. https://doi.org/10.1029/JC092iC13p14581
  • Merckelbach, L. M. (2000). Consolidation and strength evolution of soft mud layers. Delft University of Technology.
  • Mietta, F., Chassagne, C., Manning, A. J., & Winterwerp, J. C. (2009). Influence of shear rate, organic matter content, pH and salinity on mud flocculation. Ocean Dynamics, 59(5), 751–763. https://doi.org/10.1007/s10236-009-0231-4
  • Nassar, G., Lefbvre, F., Skaf, A., Carlier, J., Nongaillard, B., & Noêl, Y. (2010). Ultrasonic and acoustic investigation of cheese matrix at the beginning and the end of ripening period. Journal of Food Engineering, 96(1), 1–13. https://doi.org/10.1016/j.jfoodeng.2009.06.029
  • Papenmeier, S., Schrottke, K., Bartholomä, A., & Flemming, B. W. (2013). Sedimentological and rheological properties of the water–solid bed interface in the Weser and Ems Estuaries, nNorth Sea, Germany: Implications for fluid mud classification. Journal of Coastal Research, 289, 797–808. https://doi.org/10.2112/JCOASTRES-D-11-00144.1
  • Parsons, D. R., Schindler, R. J., Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., Manning, A. J., Ye, L., Simmons, S., Paterson, D. M., Aspden, R. J., Bass, S. J., Davies, A. G., Lichtman, I. D., & Thorne, P. D. (2016). The role of biophysical cohesion on subaqueous bed form size. Geophysical Research Letters, 43(4), 1566–1573. https://doi.org/10.1002/2016GL067667
  • Povey, M. J. W., & McClements, D. J. (1988). Ultrasonics in food engineering. Part I: Introduction and experimental methods. Journal of Food Engineering, 8(4), 217–245. https://doi.org/10.1016/0260-8774(88)90015-5
  • Recondo, M. P., Elizalde, B. E., & Buera, M. P. (2006). Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126–134. https://doi.org/10.1016/j.jfoodeng.2005.06.054
  • Reed, A. H., Faas, R. W., Allison, M. A., Calliari, L. J., Holland, K. T., O’Reilly, S. E., Vaughan, W. C., & Alves, A. (2009). Characterization of a mud deposit offshore of the Patos Lagoon, southern Brazil. Continental Shelf Research, 29(3), 597–608. https://doi.org/10.1016/j.csr.2009.02.001
  • Shah, V. V., & Balasubramaniam, K. (2000). Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave. Ultrasonics, 38(9), 921–927. https://doi.org/10.1016/S0041-624X(00)00033-0
  • Shakeel, A., Kirichek, A., & Chassagne, C. (2020a). Effect of pre-shearing on the steady and dynamic rheological properties of mud sediments. Marine and Petroleum Geology, 116, 104338. https://doi.org/10.1016/j.marpetgeo.2020.104338
  • Shakeel, A., Kirichek, A., & Chassagne, C. (2020b). Rheological analysis of mud from port of Hamburg, Germany. Journal of Soils and Sediments, 20(6), 2553–2562. https://doi.org/10.1007/s11368-019-02448-7
  • Sharifineyestani, E., & Tahvildari, N. (2021). Nonlinear wave evolution in interaction with Currents and Viscoleastic Muds. Journal of Marine Science and Engineering, 9(5), 529, Article 5. https://doi.org/10.3390/jmse9050529
  • Shen, X., Lin, M., Pan, F. P.-Y., Maa, J., Ha, H. K., Bi, Q., Shao, Y., Zhang, J., & Wu, Z. (2024). Viscosity of cohesive sediment-laden flows: Experimental and empirical methods. Journal of Geophysical Research: Oceans, 129(2), e2023JC020043. https://doi.org/10.1029/2023JC020043
  • Shin, S., & Keum, D.-Y. (2002). Continuous viscosity measurement of non-Newtonian fluids over a range of shear rates using a mass-detecting capillary viscometer. KSME International Journal, 16(2), 255–261. https://doi.org/10.1007/BF03185177
  • Sills, G. (1995). Time dependent processes in soil consolidation. In H. Yoshikuni, & O. Kusakabe (Eds.), Proceedings of the international symposium on compression and consolidation in clayey soils (pp. 875–890). Balkema.
  • Smith, S. J., & Friedrichs, C. T. (2011). Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Continental Shelf Research, 31(10), S50–S63. https://doi.org/10.1016/j.csr.2010.04.002
  • Soulsby, R. L., Manning, A. J., Spearman, J., & Whitehouse, R. J. S. (2013). Settling velocity and mass settling flux of flocculated estuarine sediments. Marine Geology, 339, 1–12. https://doi.org/10.1016/j.margeo.2013.04.006
  • Spearman, J., & Manning, A. J. (2017). On the hindered settling of sand-mud suspensions. Ocean Dynamics, 67(3–4), 465–483. https://doi.org/10.1007/s10236-017-1034-7
  • Spencer, K. L., Wheatland, J. A. T., Bushby, A. J., Carr, S. J., Droppo, I. G., & Manning, A. J. (2021). A structure–function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs. Scientific Reports, 11(1), Article 1, https://doi.org/10.1038/s41598-021-93302-9
  • Suetnova, E. I. (2010). Influence of the fluid-dynamic and rheological properties of sediments on the process of viscoelastic compaction at different rates of sedimentation. Izvestiya, Physics of the Solid Earth, 46(6), 529–537. https://doi.org/10.1134/S1069351310060078
  • Tahvildari, N., & Sharifineyestani, E. (2019). A numerical study on nonlinear surface wave evolution over viscoelastic mud. Coastal Engineering, 154, 103557. https://doi.org/10.1016/j.coastaleng.2019.103557
  • Thiers, G. R., & Seed, H. B. (1968). Cyclic Stress-Strain Characteristics of Clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 555–569. https://doi.org/10.1061/JSFEAQ.0001110
  • Toorman, E. A. (1996). Sedimentation and self-weight consolidation: General unifying theory. Géotechnique, 46(1), 103–113. https://doi.org/10.1680/geot.1996.46.1.103
  • Torfs, H., Mitchener, H., Huysentruyt, H., & Toorman, E. (1996). Settling and consolidation of mud/sand mixtures. Coastal Engineering, 29(1–2), 27–45. https://doi.org/10.1016/S0378-3839(96)00013-0
  • Vryzas, Z., Kelessidis, V. C., Nalbantian, L., Zaspalis, V., Gerogiorgis, D. I., & Wubulikasimu, Y. (2017). Effect of temperature on the rheological properties of neat aqueous Wyoming sodium bentonite dispersions. Applied Clay Science, 136, 26–36. https://doi.org/10.1016/j.clay.2016.11.007
  • Wang, H., Zentar, R., & Wang, D. (2022). Rheological characterization of fine-grained sediments under steady and dynamic conditions. International Journal of Geomechanics, 22(1), 04021260. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002243
  • Wang, L. (2021). On the consolidation and creep behaviour of layered viscoelastic gassy sediments. Engineering Geology, 293, 106298. https://doi.org/10.1016/j.enggeo.2021.106298
  • Williams, D. J. A. (1986). Rheology of cohesive suspensions. In A. J. Mehta (Ed.), Estuarine cohesive sediment dynamics (pp. 110–125). Springer. https://doi.org/10.1007/978-1-4612-4936-8_6
  • Wolanski, E., & Elliott, M. (2015). Estuarine ecohydrology: An introduction. Elsevier.
  • Zhang, N., Zhu, W., He, H., & Lv, Y. (2017). Experimental study on sedimentation and consolidation of soil particles in dredged slurry. KSCE Journal of Civil Engineering, 21(7), 2596–2606. https://doi.org/10.1007/s12205-017-0068-1
  • Zhu, Z., Wang, H., & Peng, D. (2017). Dependence of sediment suspension viscosity on solid concentration: A simple general equation. Water, 9(7), 474. https://doi.org/10.3390/w9070474

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.