59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Capacity Building of Thermal Conductivity in Polymers and Their Composites: A Short Review of the Effect of Various Fillers in Their Composites

, , , &
Received 27 Mar 2024, Accepted 06 Apr 2024, Published online: 22 Apr 2024

References

  • Vadivelu, M. A.; Kumar, C. R.; Joshi, G. M. Polymer Composites for Thermal Management: A Review. Compos. Interf. 2016, 23, 847–872. DOI: 10.1080/09276440.2016.1176853.
  • Zhang, H.; Zhang, X.; Fang, Z.; Huang, Y.; Xu, H.; Liu, Y.; Wu, D.; Zhuang, j.; Sun, J. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review. J. Compos. Sci. 2020, 4, 180. DOI: 10.3390/jcs4040180.
  • Zhou, Y.; Yao, Y.; Chen, C. Y.; Moon, K.; Wang, H.; Wong, C. P. The Use of Polyimide-Modified Aluminum Nitride Fillers in AlN@ PI/Epoxy Composites with Enhanced Thermal Conductivity for Electronic Encapsulation. Sci. Rep. 2014, 4, 4779. DOI: 10.1038/srep04779.
  • Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler. Compos.-A: Appl. Sci. Manuf. 2006, 37, 727–734. DOI: 10.1016/j.compositesa.2005.07.006.
  • Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-Walled Carbon Nanotube Fillers. Carbon 2012, 50, 4830–4838. DOI: 10.1016/j.carbon.2012.06.009.
  • Jasmee, S.; Omar, G.; Othaman, S. S. C.; Masripan, N. A.; Hamid, A. H. Interface Thermal Resistance and Thermal Conductivity of Polymer Composites at Different Types, Shapes, and Sizes of Fillers: A Review. Polym. Compos. 2021, 42, 2629–2652. DOI: 10.1002/pc.26029.
  • Mokhena, T. C.; Mochane, M. J.; Sefadi, J. S.; Motloung, S. V.; Andala, D. M. Thermal Conductivity of Graphite-Based Polymer Composites. Impact Thermal Conduct Energy Tech. 2018, 181. DOI: 10.5772/intechopen.75676.
  • Li, A.; Zhang, C.; Zhang, Y. F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers. (Basel) 2017, 9, 437. DOI: 10.3390/polym9090437.
  • Yao, Y.; Zhu, X.; Zeng, X.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites. ACS Appl. Mater. Interf. 2018, 10, 9669–9678. DOI: 10.1021/acsami.8b00328.
  • Roumeli, E.; Pavlidou, E.; Avgeropoulos, A.; Vourlias, G.; Bikiaris, D. N.; Chrissafis, K. Factors Controlling the Enhanced Mechanical and Thermal Properties of Nanodiamond-Reinforced Cross-Linked High-Density Polyethylene. J. Phys. Chem. B 2014, 118, 11341–11352. DOI: 10.1021/jp504531f.
  • Blackwood, K. M.; Pethrick, R. A.; Simpson, F. I.; Day, R. E.; Watson, C. L. Titanium Dioxide Induced Failure in Polycarbonate. J. Mater. Sci. 1995, 30, 4435–4445. DOI: 10.1007/BF00361529.
  • Dittrich, B.; Wartig, K.-A.; Mülhaupt, R.; Schartel, B. Flame-Retardancy Properties of Intumescent Ammonium Poly (Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polymers 2014, 6, 2875–2895. DOI: 10.3390/polym6112875.
  • Sun, J.; Zhang, X.; Du, Q.; Murugadoss, V.; Wu, D.; Guo, Z, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China. The Contribution of Conductive Network Conversion in Thermal Conductivity Enhancement of Polymer Composite: A Theoretical and Experimental Study. ES Mater. Manuf. 2021, 13, 53–65. DOI: 10.30919/esmm5f450.
  • Ouyang, Y.; Bai, L.; Tian, H.; Li, X.; Yuan, F. Recent Progress of Thermal Conductive Ploymer Composites: Al2O3 Fillers, Properties and Applications. Compos.-A: Appl. Sci. Manuf. 2022, 152, 106685. DOI: 10.1016/j.compositesa.2021.106685.
  • Mirizzi, L.; Carnevale, M.; D'Arienzo, M.; Milanese, C.; Di Credico, B.; Mostoni, S.; Scotti, R. Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation. Molecules 2021, 26, 3555. DOI: 10.3390/molecules26123555.
  • Huang, C.; Qian, X.; Yang, R. Thermal Conductivity of Polymers and Polymer Nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. DOI: 10.1016/j.mser.2018.06.002.
  • Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. DOI: 10.1016/j.progpolymsci.2016.03.001.
  • Pradhan, S. S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S. K. Thermally Conducting Polymer Composites with EMI Shielding: A Review. J. Elec. Mater. 2020, 49, 1749–1764. DOI: 10.1007/s11664-019-07908-x.
  • Moreira, I. P.; Sanivada, U. K.; Bessa, J.; Cunha, F.; Fangueiro, R. A Review of Multiple Scale Fibrous and Composite Systems for Heating Applications. Molecules 2021, 26, 3686. DOI: 10.3390/molecules26123686.
  • Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors Affecting Thermal Conductivities of the Polymers and Polymer Composites: A Review. Compos. Sci. Technol. 2020, 193, 108134. DOI: 10.1016/j.compscitech.2020.108134.
  • Soga, K.; Saito, T.; Kawaguchi, T.; Satoh, I. Percolation Effect on Thermal Conductivity of Filler-Dispersed Polymer Composites. JTST. 2017, 12, JTST0013–JTST0013. DOI: 10.1299/jtst.2017jtst0013.
  • Zhang, F.; Feng, Y.; Qin, M.; Gao, L.; Li, Z.; Zhao, F.; Zhang, Z.; Lv, F.; Feng, W. Stress Controllability in Thermal and Electrical Conductivity of 3D Elastic Graphene‐Crosslinked Carbon Nanotube Sponge/Polyimide Nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383. DOI: 10.1002/adfm.201901383.
  • Gu, J.; Liang, C.; Zhao, X.; Gan, B.; Qiu, H.; Guo, Y.; Yang, X.; Zhang, Q.; Wang, D. Y. Highly Thermally Conductive Flame-Retardant Epoxy Nanocomposites with Reduced Ignitability and Excellent Electrical Conductivities. Compos. Sci. 2017, 139, 83–89. DOI: 10.1016/j.compscitech.2016.12.015.
  • Kim, G. H.; Lee, D.; Shanker, A.; Shao, L.; Kwon, M. S.; Gidley, D.; Gidley, D.; Kim, J.; Pipe, K. P. High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions. Nat. Mater. 2015, 14, 295–300. DOI: 10.1038/nmat4141.
  • Krupa, I.; Cecen, V.; Boudenne, A.; Prokeš, J.; Novák, I. The Mechanical and Adhesive Properties of Electrically and Thermally Conductive Polymeric Composites Based on High Density Polyethylene Filled with Nickel Powder. Mater. Des. 2013, 51, 620–628. DOI: 10.1016/j.matdes.2013.03.067.
  • Maira, B.; Takeuchi, K.; Chammingkwan, P.; Terano, M.; Taniike, T. Thermal Conductivity of Polypropylene/Aluminum Oxide Nanocomposites Prepared Based on Reactor Granule Technology. Compos. Sci. Technol. 2018, 165, 259–265. DOI: 10.1016/j.compscitech.2018.07.007.
  • Li, D.; Chen, Q.; Yang, Y.; Chen, Y.; Xiao, C. Effects of Flake Graphite on Property Optimisation in Thermal Conductive Composites Based on Polyamide 66. Plast. Rubber Compos. 2017, 46, 266–276. DOI: 10.1080/14658011.2017.1327506.
  • Bishay, I. K.; Abd-El-Messieh, S. L.; Mansour, S. H. Electrical, Mechanical and Thermal Properties of Polyvinyl Chloride Composites Filled with Aluminum Powder. Mater. Des. 2011, 32, 62–68. DOI: 10.1016/j.matdes.2010.06.035.
  • Bigg, D. M. Thermally Conductive Polymer Compositions. Polym. Compos. 1986, 7, 125–140. DOI: 10.1002/pc.750070302.
  • Kužel, R.; Kubát, J.; Křivka, I.; Prokeš, J.; Stefan, O.; Klason, C. Heterogeneous Systems Based on Precious Metal Powders and Polymers. MSEB 1993, 17, 190–195. DOI: 10.1016/0921-5107(93)90104-U.
  • Hrabalova, M.; Gregorova, A.; Wimmer, R.; Sedlarik, V.; Machovsky, M.; Mundigler, N. Effect of Wood Flour Loading and Thermal Annealing on Viscoelastic Properties of Poly (Lactic Acid) Composite Films. J. Appl Polymer Sci. 2010, 118, 1534–1540. DOI: 10.1002/app.
  • Boudenne, A.; Ibos, L.; Fois, M.; Gehin, E.; Majeste, J. Thermophysical Properties of Polypropylene/Aluminum Composites. J. Polym. Sci. B Polym. Phys. 2004, 42, 722–732. DOI: 10.1002/polb.10713.
  • Mohamed, L. Z.; Eid, A. I.; Eessaa, A. K.; Esmail, S. A. Studying of Physico-Mechanical and Electrical Properties of Polypropylene/Nano-Copper Composites for Industrial Applications. Egypt. J. Chem. 2019, 0, 0–0. DOI1021608/EJCHEM.2018.6278.1530. DOI: 10.21608/ejchem.2018.6278.1530.
  • Chen, W.; Wang, Z.; Zhi, C.; Zhang, W. High Thermal Conductivity and Temperature Probing of Copper Nanowire/up Conversion Nanoparticles/Epoxy Composite. Compos. Sci. Tech 2016, 130, 63–69. DOI: 10.1016/j.compscitech.2016.05.004.
  • Kwon, Y. J.; Park, J. B.; Jeon, Y. P.; Hong, J. Y.; Park, H. S.; Lee, J. U. A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties. Polymers. (Basel) 2021, 13, 1312. DOI: 10.3390/polym13081312.
  • Jiao, T.; Han, B.; Zhao, L.; Zhang, Z.; Zeng, Y.; Li, D.; Zhang, K.; Deng, Q.; Zhao, Y.; Li, Z. Pie-Rolling-Inspired Construction of Vertical Carbon Fiber High Thermal Conductivity Hybrid Networks. Appl. Surf. Sci. 2023, 618, 156711. DOI: 10.1016/j.apsusc.2023.156711.
  • Usman, C.; Mabrouk, A.; Abdala, A. Enhanced Thermal Conductivity of Polyethylene Nanocomposites with Graphene, Granulated Graphene, Graphene Nanoplatelet, and Their Hybrids. Intl. J. Energy Res. 2022, 46, 10218–10227. DOI: 10.1002/er.7147.
  • Zaccone, M.; Frache, A.; Torre, L.; Armentano, I.; Monti, M. Effect of Filler Morphology on the Electrical and Thermal Conductivity of pp/Carbon-Based Nanocomposites. J. Compos. Sci. 2021, 5, 196. DOI: 10.3390/jcs5080196.
  • Cui, Y.; Xu, F.; Bao, D.; Gao, Y.; Peng, J.; Lin, D.; Geng, H.; Shen, X.; Zhu, Y.; Wang, H. Construction of 3D Interconnected Boron Nitride/Carbon Nanofiber Hybrid Network within Polymer Composite for Thermal Conductivity Improvement. J. Mater. Sci. Technol. 2023, 147, 165–175. DOI: 10.1016/j.jmst.2022.10.077.
  • Pradhan, S. S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S. K. Effect of Graphite Flake and Multi‐Walled Carbon Nanotube on Thermal, Mechanical, Electrical, and Electromagnetic Interference Shielding Properties of Polycarbonate Nanocomposite. Polym. Compos. 2021, 42, 4043–4055. DOI: 10.1002/pc.26115.
  • Feng, M.; Pan, Y.; Zhang, M.; Gao, Q.; Liu, C.; Shen, C.; Liu, X. Largely Improved Thermal Conductivity of HDPE Composites by Building a 3D Hybrid Fillers Network. Compos. Sci. 2021, 206, 108666. DOI: 10.1016/j.compscitech.2021.108666.
  • Nouri-Borujerdi, A.; Kazemi-Ranjbar, S. Thermal and Electrical Conductivity of a Graphene-Based Hybrid Filler Epoxy Composite. J. Mater. Sci. 2021, 56, 15151–15161. DOI: 10.1007/s10853-021-06272-8.
  • Doagou-Rad, S.; Islam, A.; Antusch, S.; Jung, J.; Klein, A.; Plewa, K.; Piotter, V. Investigation of Conductive Hybrid Polymer Composites Reinforced with Copper Micro Fibers and Carbon Nanotubes Produced by Injection Molding. Mater. Today Commun. 2019, 20, 100566. DOI: 10.1016/j.mtcomm.2019.100566.
  • Sun, Z.; Zhao, Z.-K.; Zhang, Y.-Y.; Li, Y.-Q.; Fu, Y.-Q.; Sun, B.-G.; Shi, H.-Q.; Huang, P.; Hu, N.; Fu, S.-Y. Mechanical, Tribological and Thermal Properties of Injection Molded Short Carbon Fiber/Expanded Graphite/Polyetherimide Composites. Compos. Sci. Technol. 2021, 201, 108498. DOI: 10.1016/j.compscitech.2020.108498.
  • Aradhana, R.; Mohanty, S.; Nayak, S. K. Novel Electrically Conductive Epoxy/Reduced Graphite Oxide/Silica Hollow Microspheres Adhesives with Enhanced Lap Shear Strength and Thermal Conductivity. J. Compos. Sci. 2019, 169, 86–94. DOI: 10.1016/j.compscitech.2018.11.008.
  • Su, Y.; Li, J. J.; Weng, G. J. Theory of Thermal Conductivity of Graphene-Polymer Nanocomposites with Interfacial Kapitza Resistance and Graphene-Graphene Contact Resistance. Carbon 2018, 137, 222–233. DOI: 10.1016/j.carbon.2018.05.033.
  • Wu, Z.; Xu, C.; Ma, C.; Liu, Z.; Cheng, H. M.; Ren, W. Synergistic Effect of Aligned Graphene Nanosheets in Graphene Foam for High‐Performance Thermally Conductive Composites. Adv. Mater. 2019, 31, e1900199. DOI: 10.1002/adma.201900199.
  • Ngo, I. L.; Vattikuti, S. P.; Byon, C. A Modified Hashin-Shtrikman Model for Predicting the Thermal Conductivity of Polymer Composites Reinforced with Randomly Distributed Hybrid Fillers. Int. J. Heat Mass Transf. 2017, 114, 727–734. DOI: 10.1016/j.ijheatmasstransfer.2017.06.116.
  • Diani, J.; Liu, Y.; Gall, K. Finite Strain 3D Thermoviscoelastic Constitutive Model for Shape Memory Polymers. Polymer Engineering & Sci. 2006, 46, 486–492. DOI: 10.1002/pen.20497.
  • Zhang, Y.; Niu, H.; Liyun, W.; Wang, N.; Xu, T.; Zhou, Z.; Xie, Y.; Wang, H.; He, Q.; Zhang, K.; Yao, Y. Fabrication of Thermally Conductive Polymer Composites Based on Hexagonal Boron Nitride: Recent Progresses and Prospects. Nano Ex. 2021, 2, 042002. DOI: 10.1088/2632-959X/ac2f09.
  • Guiney, L. M.; Mansukhani, N. D.; Jakus, A. E.; Wallace, S. G.; Shah, R. N.; Hersam, M. C. Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites. Nano Lett. 2018, 18, 3488–3493. DOI: 10.1021/acs.nanolett.8b00555.
  • Cao, H.; Gu, S.; Liu, H.; Li, Y. Disordered Graphite Platelets in Polypropylene (PP) Matrix by Spherical Alumina Particles: Increased Thermal Conductivity of the PP/Flake Graphite Composites. Comp. Comm 2021, 27, 100856. DOI: 10.1016/j.coco.2021.100856.
  • Wypych, G. Handbook of Fillers; Emerald Group Publishing Ltd., U K, 1999. DOI: 10.1108/prt.1999.12928bae.002.
  • Li, G.; Zhu, P.; Huang, L.; Zhao, T.; Sun, R.; Lu, D. D. 2014 Investigating the Rheological and Thermomechanical Properties of SiO2/Epoxy Nanocomposites: Probing the Role of Silane Coupling Agent. In 2014 15th ICEPT, August (pp. 391–395). DOI: 10.1109/ICEPT.2014.6922680.
  • Dang, T. M. L.; Kim, C. Y.; Zhang, Y.; Yang, J. F.; Masaki, T.; Yoon, D. H. () Enhanced Thermal Conductivity of Polymer Composites via Hybrid Fillers of Anisotropic Aluminum Nitride Whiskers and Isotropic Spheres. Compos. B Eng. 2017, 114, 237–246. DOI: 10.1016/j.compositesb.2017.02.008.
  • Wan, Y. J.; Li, G.; Yao, Y. M.; Zeng, X. L.; Zhu, P. L.; Sun, R. Recent Advances in Polymer-Based Electronic Packaging Materials. Comp. Comm. 2020, 19, 154–167. DOI: 10.1016/j.coco.2020.03.011.
  • Evgin, T.; Turgut, A.; Šlouf, M.; Špitalsky, Z.; Micusik, M.; Sarıkanat, M.; Nogellova, Z.; Novak, I.; Omastová, M. Morphological, Electrical, Mechanical and Thermal Properties of High-Density Polyethylene/Multiwall Carbon Nanotube Nanocomposites: Effect of Aspect Ratio. Mater. Res. Express 2019, 6, 095079. DOI: 10.1088/2053-1591/ab11a6.
  • Deng, S.; Zhu, Y.; Qi, X.; Yu, W.; Chen, F.; Fu, Q. Preparation of Polyvinylidene Fluoride/Expanded Graphite Composites with Enhanced Thermal Conductivity via Ball Milling Treatment. RSC Adv. 2016, 6, 45578–45584. DOI: 10.1039/C6RA09521F.
  • Zhang, X.; Zhang, J.; Zhang, X.; Li, C.; Wang, J.; Li, H.; Xia, L.; Wu, H.; Guo, S. Toward High Efficiency Thermally Conductive and Electrically Insulating Pathways through Uniformly Dispersed and Highly Oriented Graphites Close-Packed with SiC. Compos. Sci. Technol. 2017, 150, 217–226. DOI: 10.1016/j.compscitech.2017.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.