982
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acute Effects of Strength and Skill Training on the Cortical and Spinal Circuits of Contralateral Limb

ORCID Icon, &
Pages 119-131 | Received 25 Nov 2022, Accepted 19 Sep 2023, Published online: 03 Oct 2023

REFERENCES

  • Alibazi, R. J., Frazer, A. K., Tallent, J., Pearce, A. J., Hortobágyi, T., & Kidgell, D. (2021). A single session of submaximal grip strength training with or without high-definition anodal-TDCS produces no cross-education of maximal force. Brazilian Journal of Motor Behavior, 15(3), 216–236. https://doi.org/10.20338/bjmb.v15i3.223
  • Ansdell, P., Brownstein, C. G., Škarabot, J., Angius, L., Kidgell, D., Frazer, A., Hicks, K. M., Durbaba, R., Howatson, G., Goodall, S., & Thomas, K. (2020). Task‐specific strength increases after lower‐limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis. Experimental Physiology, 105(7), 1132–1150. https://doi.org/10.1113/EP088629
  • Berghuis, K. M., Semmler, J. G., Opie, G. M., Post, A. K., & Hortobágyi, T. (2017). Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: A systematic review and meta-analysis. Neurobiology of Aging, 55, 61–71. https://doi.org/10.1016/j.neurobiolaging.2017.03.024
  • Bodofsky, E. B. (1999). Contraction-induced upper extremity H reflexes: Normative values. Archives of Physical Medicine and Rehabilitation, 80(5), 562–565. https://doi.org/10.1016/s0003-9993(99)90200-9
  • Bologna, M., Rocchi, L., Paparella, G., Nardella, A., Voti, P. L., Conte, A., Kojovic, M., Rothwell, J. C., & Berardelli, A. (2015). Reversal of practice-related effects on corticospinal excitability has no immediate effect on behavioral outcome. Brain Stimulation, 8(3), 603–612. https://doi.org/10.1016/j.brs.2015.01.405
  • Calvert, G. H., & Carson, R. G. (2022). Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neuroscience and Biobehavioral Reviews, 132, 260–288. https://doi.org/10.1016/j.neubiorev.2021.11.025
  • Capozio, A., Chakrabarty, S., & Astill, S. (2021a). The Effect of Sound and Stimulus Expectation on Transcranial Magnetic Stimulation-Elicited Motor Evoked Potentials. Brain Topography, 34(6), 720–730. https://doi.org/10.1007/s10548-021-00867-9
  • Capozio, A., Chakrabarty, S., & Astill, S. (2021b). Reliability of the TMS-conditioned monosynaptic reflex in the flexor carpi radialis muscle. Neuroscience Letters, 745, 135622. https://doi.org/10.1016/j.neulet.2020.135622
  • Carroll, T. J., Herbert, R. D., Munn, J., Lee, M., & Gandevia, S. C. (2006). Contralateral effects of unilateral strength training: Evidence and possible mechanisms. Journal of Applied Physiology (Bethesda, Md.: 1985), 101(5), 1514–1522. https://doi.org/10.1152/japplphysiol.00531.2006
  • Carroll, T. J., Lee, M., Hsu, M., & Sayde, J. (2008). Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. Journal of Applied Physiology (Bethesda, Md.: 1985), 104(6), 1656–1664. https://doi.org/10.1152/japplphysiol.01351.2007
  • Carson, R. G., Capozio, A., McNickle, E., & Sack, A. T. (2021). A Bayesian approach to analysing cortico-cortical associative stimulation induced increases in the excitability of corticospinal projections in humans. Experimental Brain Research, 239(1), 21–30. https://doi.org/10.1007/s00221-020-05943-3
  • Carson, R. G., Riek, S., Mackey, D., Meichenbaum, D., Willms, K., Forner, M., & Byblow, W. (2004). Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology, 560(Pt 3), 929–940. https://doi.org/10.1113/jphysiol.2004.069088
  • Carson, R. G., Ruddy, K. L., & McNickle, E. (2016). What do TMS-evoked motor potentials tell Us about motor learning?. Progress in Motor Control: Theories and Translations., 143–157.
  • Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation. Neurology, 48(5), 1398–1403. https://doi.org/10.1212/wnl.48.5.1398
  • Christiansen, L., Madsen, M., Bojsen-Møller, E., Thomas, R., Nielsen, J. B., & Lundbye-Jensen, J. (2018). Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days. Brain Stimulation, 11(2), 346–357. https://doi.org/10.1016/j.brs.2017.11.005
  • Christie, A. D., Inglis, J. G., Boucher, J. P., & Gabriel, D. A. (2005). Reliability of the FCR H-reflex. Journal of Clinical Neurophysiology, 22(3), 204–209.
  • Colomer-Poveda, D., Romero-Arenas, S., Keller, M., Hortobágyi, T., & Márquez, G. (2019). Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: A systematic review. Physical Therapy in Sport : official Journal of the Association of Chartered Physiotherapists in Sports Medicine, 40, 143–152. https://doi.org/10.1016/j.ptsp.2019.09.006
  • Davis, W. W. (1901). Researches in cross-education. Yale University.
  • Di Lazzaro, V., Oliviero, A., Mazzone, P., Insola, A., Pilato, F., Saturno, E., Accurso, A., Tonali, P., & Rothwell, J. (2001). Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Experimental Brain Research, 141(1), 121–127. https://doi.org/10.1007/s002210100863
  • Di Lazzaro, V., Profice, P., Ranieri, F., Capone, F., Dileone, M., Oliviero, A., & Pilato, F. (2012). I-wave origin and modulation. Brain Stimulation, 5(4), 512–525. https://doi.org/10.1016/j.brs.2011.07.008
  • Duchateau, J., &Hainaut, K. (1993). Behaviour of short and long latency reflexes in fatigued human muscles. The Journal of Physiology, 471, 787–799. https://doi.org/10.1113/jphysiol.1993.sp019928.8120833
  • Frazer, A. K.,Williams, J.,Spittle, M., &Kidgell, D. J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 117(4), 665–677. https://doi.org/10.1007/s00421-017-3538-8.28243779
  • Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
  • Goodall, S., Gibson, A. S. C., Voller, B., Lomarev, M., Howatson, G., Dang, N., Hortobágyi, T., & Hallett, M. (2013). Repetitive transcranial magnetic stimulation attenuates the perception of force output production in non-exercised hand muscles after unilateral exercise. PloS One, 8(11), e80202. https://doi.org/10.1371/journal.pone.0080202
  • Goodwill, A. M., Pearce, A. J., & Kidgell, D. J. (2012). Corticomotor plasticity following unilateral strength training. Muscle & Nerve, 46(3), 384–393. https://doi.org/10.1002/mus.23316
  • Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187–199. https://doi.org/10.1016/j.neuron.2007.06.026
  • Hellebrandt, F. A. (1951). Cross education: Ipsilateral and contralateral effects of unimanual training. Journal of Applied Physiology, 4(2), 136–144. https://doi.org/10.1152/jappl.1951.4.2.136
  • Hendy, A. M., &Kidgell, D. J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Experimental Brain Research, 232(10), 3243–3252. https://doi.org/10.1007/s00221-014-4016-8.24942703
  • Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., & Hallett, M. (2009). Chronic low-frequency rTMS of primary motor cortex diminishes exercise training-induced gains in maximal voluntary force in humans. Journal of Applied Physiology (Bethesda, Md.: 1985), 106(2), 403–411. https://doi.org/10.1152/japplphysiol.90701.2008
  • Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., & Hallett, M. (2011). Interhemispheric plasticity in humans. Medicine and Science in Sports and Exercise, 43(7), 1188–1199. https://doi.org/10.1249/MSS.0b013e31820a94b8
  • Hortobágyi, T., Taylor, J. L., Petersen, N. T., Russell, G., & Gandevia, S. C. (2003). Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Journal of Neurophysiology, 90(4), 2451–2459. https://doi.org/10.1152/jn.01001.2002
  • Hurley, S. R., & Lee, T. D. (2006). The influence of augmented feedback and prior learning on the acquisition of a new bimanual coordination pattern. Human Movement Science, 25(3), 339–348. https://doi.org/10.1016/j.humov.2006.03.006
  • Jaberzadeh, S., Scutter, S., Warden-Flood, A., & Nazeran, H. (2004). Between-days reliability of H-reflexes in human flexor carpi radialis. Archives of Physical Medicine and Rehabilitation, 85(7), 1168–1173.
  • Janssen, A. M., Oostendorp, T. F., & Stegeman, D. F. (2015). The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas. Journal of Neuroengineering and Rehabilitation, 12(1), 47. https://doi.org/10.1186/s12984-015-0036-2
  • Jensen, J. L., Marstrand, P. C., & Nielsen, J. B. (2005). Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of Applied Physiology (Bethesda, Md.: 1985), 99(4), 1558–1568. https://doi.org/10.1152/japplphysiol.01408.2004
  • Kidgell, D. J., Frazer, A. K., Daly, R. M., Rantalainen, T., Ruotsalainen, I., Ahtiainen, J., Avela, J., & Howatson, G. (2015). Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience, 300, 566–575. https://doi.org/10.1016/j.neuroscience.2015.05.057
  • Kidgell, D. J., Stokes, M. A., & Pearce, A. J. (2011). Strength training of one limb increases corticomotor excitability projecting to the contralateral homologous limb. Motor Control, 15(2), 247–266. https://doi.org/10.1123/mcj.15.2.247
  • Kotan, S., Kojima, S., Miyaguchi, S., Sugawara, K., & Onishi, H. (2015). Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction. Frontiers in Human Neuroscience, 9, 363. https://doi.org/10.3389/fnhum.2015.00363
  • Lagerquist, O., Zehr, E. P., & Docherty, D. (2006). Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. Journal of Applied Physiology (Bethesda, Md.: 1985), 100(1), 83–90. https://doi.org/10.1152/japplphysiol.00533.2005
  • Lazzaro, V. D., Oliviero, A., Profice, P., Meglio, M., Cioni, B., Tonali, P., & Rothwell, J. (2001). Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. The Journal of Physiology, 537(Pt 3), 1047–1058. https://doi.org/10.1111/j.1469-7793.2001.01047.x
  • Lee, M., & Carroll, T. J. (2007). Cross education. Sports Medicine (Auckland, N.Z.), 37(1), 1–14. https://doi.org/10.2165/00007256-200737010-00001
  • Lee, M., Gandevia, S. C., & Carroll, T. J. (2009). Unilateral strength training increases voluntary activation of the opposite untrained limb. Clinical Neurophysiology : official Journal of the International Federation of Clinical Neurophysiology, 120(4), 802–808. https://doi.org/10.1016/j.clinph.2009.01.002
  • Lee, M., Hinder, M. R., Gandevia, S. C., & Carroll, T. J. (2010). The ipsilateral motor cortex contributes to cross‐limb transfer of performance gains after ballistic motor practice. The Journal of Physiology, 588(Pt 1), 201–212. https://doi.org/10.1113/jphysiol.2009.183855
  • Leukel, C., Taube, W., Beck, S., & Schubert, M. (2012). Pathway‐specific plasticity in the human spinal cord. The European Journal of Neuroscience, 35(10), 1622–1629. https://doi.org/10.1111/j.1460-9568.2012.08067.x
  • Leung, M., Rantalainen, T., Teo, W.-P., & Kidgell, D. (2015). Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience, 305, 99–108. https://doi.org/10.1016/j.neuroscience.2015.08.007
  • Leung, M., Rantalainen, T., Teo, W.-P., & Kidgell, D. (2018). The ipsilateral corticospinal responses to cross-education are dependent upon the motor-training intervention. Experimental Brain Research, 236(5), 1331–1346. https://doi.org/10.1007/s00221-018-5224-4
  • Manca, A., Hortobágyi, T., Carroll, T., Enoka, R., Farthing, J., Gandevia, S., Kidgell, D., Taylor, J. L., & Deriu, F. (2021). Contralateral effects of unilateral strength and skill training: Modified delphi consensus to establish key aspects of cross-education. Sports Medicine (Auckland, N.Z.), 51(1), 11–20. https://doi.org/10.1007/s40279-020-01377-7
  • Mason, J., Frazer, A. K., Horvath, D. M., Pearce, A. J., Avela, J., Howatson, G., & Kidgell, D. J. (2018). Ipsilateral corticomotor responses are confined to the homologous muscle following cross-education of muscular strength. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 43(1), 11–22. https://doi.org/10.1139/apnm-2017-0457
  • Mason, J., Frazer, A. K., Jaberzadeh, S., Ahtiainen, J. P., Avela, J., Rantalainen, T., Leung, M., & Kidgell, D. J. (2019). Determining the corticospinal responses to single bouts of skill and strength training. Journal of Strength and Conditioning Research, 33(9), 2299–2307. https://doi.org/10.1519/JSC.0000000000003266
  • Muddle, T. W., Colquhoun, R. J., Magrini, M. A., Luera, M. J., DeFreitas, J. M., & Jenkins, N. D. (2018). Effects of fatiguing, submaximal high‐versus low‐torque isometric exercise on motor unit recruitment and firing behavior. Physiological Reports, 6(8), e13675. https://doi.org/10.14814/phy2.13675
  • Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L., & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research, 136(4), 431–438. https://doi.org/10.1007/s002210000614
  • Niemann, N., Wiegel, P., Kurz, A., Rothwell, J. C., & Leukel, C. (2018). Assessing TMS-induced D and I waves with spinal H-reflexes. Journal of Neurophysiology, 119(3), 933–943. https://doi.org/10.1152/jn.00671.2017
  • Niemann, N., Wiegel, P., Rothwell, J. C., & Leukel, C. (2016). The effect of subthreshold transcranial magnetic stimulation on the excitation of corticospinal volleys with different conduction times. bioRxiv, 084574.
  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004
  • Nuzzo, J. L., Barry, B. K., Gandevia, S. C., & Taylor, J. L. (2016). Acute strength training increases responses to stimulation of corticospinal axons. Medicine and Science in Sports and Exercise, 48(1), 139–150. https://doi.org/10.1249/MSS.0000000000000733
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Palmieri, R. M., Ingersoll, C. D., & Hoffman, M. A. (2004). The Hoffmann reflex: Methodologic considerations and applications for use in sports medicine and athletic training research. Journal of Athletic Training, 39(3), 268.
  • Perez, M. A., Lundbye‐Jensen, J., & Nielsen, J. B. (2006). Changes in corticospinal drive to spinal motoneurones following visuo‐motor skill learning in humans. The Journal of Physiology, 573(Pt 3), 843–855. https://doi.org/10.1113/jphysiol.2006.105361
  • Poh, E., Riek, S., & Carroll, T. (2013). Ipsilateral corticospinal responses to ballistic training are similar for various intensities and timings of TMS. Acta Physiologica (Oxford, England), 207(2), 385–396. https://doi.org/10.1111/apha.12032
  • Ruddy, K. L., & Carson, R. G. (2013). Neural pathways mediating cross education of motor function. Frontiers in Human Neuroscience, 7, 397. https://doi.org/10.3389/fnhum.2013.00397
  • Ruddy, K. L., Rudolf, A. K., Kalkman, B., King, M., Daffertshofer, A., Carroll, T. J., & Carson, R. G. (2016). Neural adaptations associated with interlimb transfer in a ballistic wrist flexion task. Frontiers in Human Neuroscience, 10, 204. https://doi.org/10.3389/fnhum.2016.00204
  • Sale, M. V., Ridding, M. C., & Nordstrom, M. A. (2007). Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Experimental Brain Research, 181(4), 615–626. https://doi.org/10.1007/s00221-007-0960-x
  • Scripture, E., Smith, T. L., & Brown, E. M. (1894). On the education of muscular control and power. Studies from the Yale Psychological Laboratory, 2(5), 114–119.
  • Selvanayagam, V. S., Riek, S., & Carroll, T. J. (2011). Early neural responses to strength training. Journal of Applied Physiology (Bethesda, Md.: 1985), 111(2), 367–375. https://doi.org/10.1152/japplphysiol.00064.2011
  • Suzuki, M., Kirimoto, H., Onishi, H., Yamada, S., Tamaki, H., Maruyama, A., & Yamamoto, J-i (2012). Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills. Brain Research, 1473, 114–123. https://doi.org/10.1016/j.brainres.2012.07.043
  • Tinazzi, M., & Zanette, G. (1998). Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neuroscience Letters, 244(3), 121–124. https://doi.org/10.1016/s0304-3940(98)00150-5
  • Turi, Z., Lenz, M., Paulus, W., Mittner, M., & Vlachos, A. (2021). Selecting stimulation intensity in repetitive transcranial magnetic stimulation studies: A systematic review between 1991 and 2020. The European Journal of Neuroscience, 53(10), 3404–3415. https://doi.org/10.1111/ejn.15195
  • Zult, T., Howatson, G., Goodall, S., Thomas, K., & Solnik, S. (2016). Mirror training augments the cross-education of strength and affects inhibitory paths.