122
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decoding the Spike-Band Subthreshold Motor Cortical Activity

ORCID Icon & ORCID Icon
Pages 161-183 | Received 23 Jan 2023, Accepted 25 Oct 2023, Published online: 14 Nov 2023

References

  • Ashe, J. (1997). Force and the motor cortex. Behavioural Brain Research, 87(2), 255–269. https://doi.org/10.1016/s0166-4328(97)00752-3
  • Ashe, J., & Georgopoulos, A. P. (1994). Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex (New York, N.Y.: 1991), 4(6), 590–600. https://doi.org/10.1093/cercor/4.6.590
  • Bacher, D., Jarosiewicz, B., Masse, N. Y., Stavisky, S. D., Simeral, J. D., Newell, K., Oakley, E. M., Cash, S. S., Friehs, G., & Hochberg, L. R. (2015). Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabilitation and Neural Repair, 29(5), 462–471. https://doi.org/10.1177/1545968314554624
  • Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., & Donoghue, J. P. (2012). Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: Spikes, multiunit activity, and local field potentials. Journal of Neurophysiology, 107(5), 1337–1355. https://doi.org/10.1152/jn.00781.2011
  • Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg, D. A., Nielson, D. M., Sharma, G., Sederberg, P. B., Glenn, B. C., Mysiw, W. J., Morgan, A. G., Deogaonkar, M., & Rezai, A. R. (2016). Restoring cortical control of functional movement in a human with quadriplegia. Nature, 533(7602), 247–250. https://doi.org/10.1038/nature17435
  • Branco, M. P., de Boer, L. M., Ramsey, N. F., & Vansteensel, M. J. (2019). Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective. The European Journal of Neuroscience, 50(5), 2755–2772. https://doi.org/10.1111/ejn.14342
  • Carlson, D., & Carin, L. (2019). Continuing progress of spike sorting in the era of big data. Current Opinion in Neurobiology, 55, 90–96. https://doi.org/10.1016/j.conb.2019.02.007
  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O'Doherty, J. E., Santucci, D. M., Dimitrov, D. F., Patil, P. G., Henriquez, C. S., & Nicolelis, M. A. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1(2), E42. https://doi.org/10.1371/journal.pbio.0000042
  • Chaudhary, U., Vlachos, I., Zimmermann, J. B., Espinosa, A., Tonin, A., Jaramillo-Gonzalez, A., Khalili-Ardali, M., Topka, H., Lehmberg, J., Friehs, G. M., Woodtli, A., Donoghue, J. P., & Birbaumer, N. (2022). Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nature Communications, 13(1), 1236. https://doi.org/10.1038/s41467-022-28859-8
  • Cheney, P. D., & Fetz, E. E. (1980). Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology, 44(4), 773–791. https://doi.org/10.1152/jn.1980.44.4.773
  • Chib, V. S., Krutky, M. A., Lynch, K. M., & Mussa-Ivaldi, F. A. (2009). The separate neural control of hand movements and contact forces. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(12), 3939–3947. https://doi.org/10.1523/JNEUROSCI.5856-08.2009
  • Christie, B. P., Tat, D. M., Irwin, Z. T., Gilja, V., Nuyujukian, P., Foster, J. D., Ryu, S. I., Shenoy, K. V., Thompson, D. E., & Chestek, C. A. (2015). Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance. Journal of Neural Engineering, 12(1), 016009. https://doi.org/10.1088/1741-2560/12/1/016009
  • Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England), 381(9866), 557–564. https://doi.org/10.1016/S0140-6736(12)61816-9
  • Dağdevir, E., Kocatürk, M., & Okatan, M. (2019). Likelihood-based amplitude thresholding in extracellular neural recordings [Paper presentation]. 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, pp. 1–4, https://doi.org/10.1109/SIU.2019.8806618
  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press.
  • Degenhart, A. D., Bishop, W. E., Oby, E. R., Tyler-Kabara, E. C., Chase, S. M., Batista, A. P., & Yu, B. M. (2020). Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity. Nature Biomedical Engineering, 4(7), 672–685. https://doi.org/10.1038/s41551-020-0542-9
  • Dekleva, B. M., Weiss, J. M., Boninger, M. L., & Collinger, J. L. (2021). Generalizable cursor click decoding using grasp-related neural transients. Journal of Neural Engineering, 18(4), 0460e9. https://doi.org/10.1088/1741-2552/ac16b2
  • Donoho, D., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455. https://doi.org/10.1093/biomet/81.3.425
  • Downey, J. E., Weiss, J. M., Flesher, S. N., Thumser, Z. C., Marasco, P. D., Boninger, M. L., Gaunt, R. A., & Collinger, J. L. (2018). Implicit grasp force representation in human motor cortical recordings. Frontiers in Neuroscience, 12, 801. https://doi.org/10.3389/fnins.2018.00801
  • Dunlap, C. F., Colachis, S. C., 4th, Meyers, E. C., Bockbrader, M. A., & Friedenberg, D. A. (2020). Classifying intracortical brain-machine interface signal disruptions based on system performance and applicable compensatory strategies: A review. Frontiers in Neurorobotics, 14, 558987. https://doi.org/10.3389/fnbot.2020.558987
  • Evarts, E. V., Fromm, C., Kröller, J., & Jennings, V. A. (1983). Motor cortex control of finely graded forces. Journal of Neurophysiology, 49(5), 1199–1215. https://doi.org/10.1152/jn.1983.49.5.1199
  • Flint, R. D., Wright, Z. A., Scheid, M. R., & Slutzky, M. W. (2013). Long term, stable brain machine interface performance using local field potentials and multiunit spikes. Journal of Neural Engineering, 10(5), 056005. https://doi.org/10.1088/1741-2560/10/5/056005
  • Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibres of Loligo. The Journal of Physiology, 131(2), 341–376. https://doi.org/10.1113/jphysiol.1956.sp005467
  • Fraser, G. W., Chase, S. M., Whitford, A., & Schwartz, A. B. (2009). Control of a brain-computer interface without spike sorting. Journal of Neural Engineering, 6(5), 055004. https://doi.org/10.1088/1741-2560/6/5/055004
  • Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 23(2), 260–270. https://doi.org/10.1038/s41593-019-0555-4
  • Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A. (2017). Neural manifolds for the control of movement. Neuron, 94(5), 978–984. https://doi.org/10.1016/j.neuron.2017.05.025
  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2(11), 1527–1537. https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982
  • Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science (New York, N.Y.), 233(4771), 1416–1419. https://doi.org/10.1126/science.3749885
  • Gioanni, Y., & Lamarche, M. (1985). A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Research, 344(1), 49–61. https://doi.org/10.1016/0006-8993(85)91188-6
  • Heim, M., Rousseau, L., Reculusa, S., Urbanova, V., Mazzocco, C., Joucla, S., Bouffier, L., Vytras, K., Bartlett, P., Kuhn, A., & Yvert, B. (2012). Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. Journal of Neurophysiology, 108(6), 1793–1803. https://doi.org/10.1152/jn.00711.2011
  • Hepp-Reymond, M., Kirkpatrick-Tanner, M., Gabernet, L., Qi, H. X., & Weber, B. (1999). Context-dependent force coding in motor and premotor cortical areas. Experimental Brain Research, 128(1-2), 123–133. https://doi.org/10.1007/s002210050827
  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., van der Smagt, P., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375. https://doi.org/10.1038/nature11076
  • Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171. https://doi.org/10.1038/nature04970
  • Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800–802. https://doi.org/10.1093/biomet/75.4.800
  • Intveld, R. W., Dann, B., Michaels, J. A., & Scherberger, H. (2018). Neural coding of intended and executed grasp force in macaque areas AIP, F5, and M1. Scientific Reports, 8(1), 17985. https://doi.org/10.1038/s41598-018-35488-z
  • Jarosiewicz, B., Sarma, A. A., Bacher, D., Masse, N. Y., Simeral, J. D., Sorice, B., Oakley, E. M., Blabe, C., Pandarinath, C., Gilja, V., Cash, S. S., Eskandar, E. N., Friehs, G., Henderson, J. M., Shenoy, K. V., Donoghue, J. P., & Hochberg, L. R. (2015). Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Science Translational Medicine, 7(313), 313ra179. https://doi.org/10.1126/scitranslmed.aac7328
  • Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science (New York, N.Y.), 285(5436), 2136–2139. https://doi.org/10.1126/science.285.5436.2136
  • Kalaska, J. F. (2009). From intention to action: Motor cortex and the control of reaching movements. Advances in Experimental Medicine and Biology, 629, 139–178. https://doi.org/10.1007/978-0-387-77064-2_8
  • Kalaska, J. F., Cohen, D. A., Hyde, M. L., & Prud’homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(6), 2080–2102. https://doi.org/10.1523/JNEUROSCI.09-06-02080.1989
  • Kim, S. P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., & Black, M. J. (2008). Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. Journal of Neural Engineering, 5(4), 455–476. https://doi.org/10.1088/1741-2560/5/4/010
  • Kim, S. P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., & Black, M. J. (2011). Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 19(2), 193–203. https://doi.org/10.1109/TNSRE.2011.2107750
  • Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. Journal of Neurophysiology, 80(6), 3321–3325. https://doi.org/10.1152/jn.1998.80.6.3321
  • Kocatürk, M., Gulcur, H. O., & Canbeyli, R. (2015). Toward building hybrid biological/in silico neural networks for motor neuroprosthetic control. Frontiers in Neurorobotics, 9, 8. https://doi.org/10.3389/fnbot.2015.00008
  • Larsen, B. R., Stoica, A., & MacAulay, N. (2016). Managing brain extracellular K(+) during neuronal activity: The physiological role of the Na(+)/K(+)-ATPase subunit isoforms. Frontiers in Physiology, 7, 141. https://doi.org/10.3389/fphys.2016.00141
  • Lefebvre, B., Yger, P., & Marre, O. (2016). Recent progress in multi-electrode spike sorting methods. Journal of Physiology, Paris, 110(4 Pt A), 327–335. https://doi.org/10.1016/j.jphysparis.2017.02.005
  • Leo, A., Handjaras, G., Bianchi, M., Marino, H., Gabiccini, M., Guidi, A., Scilingo, E. P., Pietrini, P., Bicchi, A., Santello, M., & Ricciardi, E. (2016). A synergy-based hand control is encoded in human motor cortical areas. eLife, 5, e13420. https://doi.org/10.7554/eLife.13420
  • Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Network: Computation in Neural Systems, 9(4), R53–R78. https://doi.org/10.1088/0954-898X_9_4_001
  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Chapman and Hall.
  • Mehring, C., Rickert, J., Vaadia, E., Cardosa de Oliveira, S., Aertsen, A., & Rotter, S. (2003). Inference of hand movements from local field potentials in monkey motor cortex. Nature Neuroscience, 6(12), 1253–1254. https://doi.org/10.1038/nn1158
  • Milekovic, T., Sarma, A. A., Bacher, D., Simeral, J. D., Saab, J., Pandarinath, C., Sorice, B. L., Blabe, C., Oakley, E. M., Tringale, K. R., Eskandar, E., Cash, S. S., Henderson, J. M., Shenoy, K. V., Donoghue, J. P., & Hochberg, L. R. (2018). Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. Journal of Neurophysiology, 120(1), 343–360. https://doi.org/10.1152/jn.00493.2017
  • Milekovic, T., Truccolo, W., Grün, S., Riehle, A., & Brochier, T. (2015). Local field potentials in primate motor cortex encode grasp kinetic parameters. NeuroImage, 114, 338–355. https://doi.org/10.1016/j.neuroimage.2015.04.008
  • Mitz, A. R., Bartolo, R., Saunders, R. C., Browning, P. G., Talbot, T., & Averbeck, B. B. (2017). High channel count single-unit recordings from nonhuman primate frontal cortex. Journal of Neuroscience Methods, 289, 39–47. https://doi.org/10.1016/j.jneumeth.2017.07.001
  • Morrow, M. M., & Miller, L. E. (2003). Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. Journal of Neurophysiology, 89(4), 2279–2288. https://doi.org/10.1152/jn.00632.2002
  • Murphy, K. (1998). Kalman filter toolbox for Matlab. https://www.cs.ubc.ca/∼murphyk/Software/Kalman/kalman.html
  • Musk, E. (2019). An integrated brain-machine interface platform with thousands of channels. Journal of Medical Internet Research, 21(10), e16194. https://doi.org/10.2196/16194
  • Nicolelis, M. A. (2003). Brain-machine interfaces to restore motor function and probe neural circuits. Nature Reviews. Neuroscience, 4(5), 417–422. https://doi.org/10.1038/nrn1105
  • Nuyujukian, P., Albites Sanabria, J., Saab, J., Pandarinath, C., Jarosiewicz, B., Blabe, C. H., Franco, B., Mernoff, S. T., Eskandar, E. N., Simeral, J. D., Hochberg, L. R., Shenoy, K. V., & Henderson, J. M. (2018). Cortical control of a tablet computer by people with paralysis. PloS One, 13(11), e0204566. https://doi.org/10.1371/journal.pone.0204566
  • Obaid, A., Hanna, M. E., Wu, Y. W., Kollo, M., Racz, R., Angle, M. R., Müller, J., Brackbill, N., Wray, W., Franke, F., Chichilnisky, E. J., Hierlemann, A., Ding, J. B., Schaefer, A. T., & Melosh, N. A. (2020). Massively parallel microwire arrays integrated with CMOS chips for neural recording. Science Advances, 6(12), eaay2789. https://doi.org/10.1126/sciadv.aay2789
  • Oby, E. R., Perel, S., Sadtler, P. T., Ruff, D. A., Mischel, J. L., Montez, D. F., Cohen, M. R., Batista, A. P., & Chase, S. M. (2016). Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters. Journal of Neural Engineering, 13(3), 036009. https://doi.org/10.1088/1741-2560/13/3/036009
  • Okatan, M., & Kocatürk, M. (2017). Truncation thresholds: A pair of spike detection thresholds computed using truncated probability distributions. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1436–1447. https://doi.org/10.3906/elk-1603-33
  • Okatan, M., & Kocatürk, M. (2018a). High performance decoding of behavioral information from background activity in extracellular neural recordings [Paper presentation]. Medical Technologies National Congress (TIPTEKNO), pp. 1–4. https://doi.org/10.1109/TIPTEKNO.2018.8597114
  • Okatan, M., & Kocatürk, M. (2018b). High performance decoding of behavioral information from mean background activity in extracellular neural recordings. The Journal of Cognitive Systems, 3(2), 23–27. https://dergipark.org.tr/tr/pub/jcs/issue/44086/549109.
  • Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett, F. R., Hochberg, L. R., Shenoy, K. V., & Henderson, J. M. (2017). High performance communication by people with paralysis using an intracortical brain-computer interface. eLife, 6, e18554. https://doi.org/10.7554/eLife.18554
  • Pérez-Prieto, N., & Delgado-Restituto, M. (2021). Recording strategies for high channel count, densely spaced microelectrode arrays. Frontiers in Neuroscience, 15, 681085. https://doi.org/10.3389/fnins.2021.681085
  • Perge, J. A., Zhang, S., Malik, W. Q., Homer, M. L., Cash, S., Friehs, G., Eskandar, E. N., Donoghue, J. P., & Hochberg, L. R. (2014). Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. Journal of Neural Engineering, 11(4), 046007. https://doi.org/10.1088/1741-2560/11/4/046007
  • Pohlmeyer, E. A., Solla, S. A., Perreault, E. J., & Miller, L. E. (2007). Prediction of upper limb muscle activity from motor cortical discharge during reaching. Journal of Neural Engineering, 4(4), 369–379. https://doi.org/10.1088/1741-2560/4/4/003
  • Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8), 1661–1687. https://doi.org/10.1162/089976604774201631
  • Rastogi, A., Vargas-Irwin, C. E., Willett, F. R., Abreu, J., Crowder, D. C., Murphy, B. A., Memberg, W. D., Miller, J. P., Sweet, J. A., Walter, B. L., Cash, S. S., Rezaii, P. G., Franco, B., Saab, J., Stavisky, S. D., Shenoy, K. V., Henderson, J. M., Hochberg, L. R., Kirsch, R. F., & Ajiboye, A. B. (2020). Neural representation of observed, imagined, and attempted grasping force in motor cortex of individuals with chronic tetraplegia. Scientific Reports, 10(1), 1429. https://doi.org/10.1038/s41598-020-58097-1
  • Rastogi, A., Willett, F. R., Abreu, J., Crowder, D. C., Murphy, B. A., Memberg, W. D., Vargas-Irwin, C. E., Miller, J. P., Sweet, J., Walter, B. L., Rezaii, P. G., Stavisky, S. D., Hochberg, L. R., Shenoy, K. V., Henderson, J. M., Kirsch, R. F., & Ajiboye, A. B. (2021). The neural representation of force across grasp types in motor cortex of humans with tetraplegia. Eneuro, 8(1), ENEURO.0231-20.2020. https://doi.org/10.1523/ENEURO.0231-20.2020
  • Rey, H. G., Pedreira, C., & Quian Quiroga, R. (2015). Past, present and future of spike sorting techniques. Brain Research Bulletin, 119(Pt B), 106–117. https://doi.org/10.1016/j.brainresbull.2015.04.007
  • Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khandoker, A. H., & Baumert, M. (2021). Progress in brain computer interface: challenges and opportunities. Frontiers in Systems Neuroscience, 15, 578875. https://doi.org/10.3389/fnsys.2021.578875
  • Salahuddin, U., & Gao, P. X. (2021). Signal generation, acquisition, and processing in brain machine interfaces: A unified review. Frontiers in Neuroscience, 15, 728178. https://doi.org/10.3389/fnins.2021.728178
  • Saleh, M., Takahashi, K., Amit, Y., & Hatsopoulos, N. G. (2010). Encoding of coordinated grasp trajectories in primary motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(50), 17079–17090. PMID: 21159978; PMCID: PMC3046070. https://doi.org/10.1523/JNEUROSCI.2558-10.2010
  • Schaffelhofer, S., Agudelo-Toro, A., & Scherberger, H. (2015). Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(3), 1068–1081. https://doi.org/10.1523/JNEUROSCI.3594-14.2015
  • Schwarz, D. A., Lebedev, M. A., Hanson, T. L., Dimitrov, D. F., Lehew, G., Meloy, J., Rajangam, S., Subramanian, V., Ifft, P. J., Li, Z., Ramakrishnan, A., Tate, A., Zhuang, K. Z., & Nicolelis, M. A. (2014). Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nature Methods, 11(6), 670–676. https://doi.org/10.1038/nmeth.2936
  • Sergio, L. E., & Kalaska, J. F. (1998). Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. Journal of Neurophysiology, 80(3), 1577–1583. https://doi.org/10.1152/jn.1998.80.3.1577
  • Sergio, L. E., & Kalaska, J. F. (2003). Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. Journal of Neurophysiology, 89(1), 212–228. https://doi.org/10.1152/jn.00016.2002
  • Sergio, L. E., Hamel-Pâquet, C., & Kalaska, J. F. (2005). Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. Journal of Neurophysiology, 94(4), 2353–2378. https://doi.org/10.1152/jn.00989.2004
  • Sharma, K., Tripathi, R. K., Jatana, H. S., & Sharma, R. (2022). Design of a low-noise low-voltage amplifier for improved neural signal recording. The Review of Scientific Instruments, 93(6), 064710. https://doi.org/10.1063/5.0087527
  • Smith, A. M., Hepp-Reymond, M. C., & Wyss, U. R. (1975). Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Experimental Brain Research, 23(3), 315–332. https://doi.org/10.1007/BF00239743
  • Stark, E., & Abeles, M. (2007). Predicting movement from multiunit activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(31), 8387–8394. https://doi.org/10.1523/JNEUROSCI.1321-07.2007
  • Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2014). Hybrid decoding of both spikes and low-frequency local field potentials for brain-machine interfaces. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2014, 3041–3044. 0 https://doi.org/10.1109/EMBC.2014.6944264
  • Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology, 50, 92–100. https://doi.org/10.1016/j.conb.2018.01.009
  • Taira, M., Boline, J., Smyrnis, N., Georgopoulos, A. P., & Ashe, J. (1996). On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional static isometric force. Experimental Brain Research, 109(3), 367–376. https://doi.org/10.1007/BF00229620
  • Todorova, S., Sadtler, P., Batista, A., Chase, S., & Ventura, V. (2014). To sort or not to sort: The impact of spike-sorting on neural decoding performance. Journal of Neural Engineering, 11(5), 056005. Epub 2014 Aug 1. PMID: 25082508; PMCID: PMC4454741. https://doi.org/10.1088/1741-2560/11/5/056005
  • Trautmann, E. M., Stavisky, S. D., Lahiri, S., Ames, K. C., Kaufman, M. T., O'Shea, D. J., Vyas, S., Sun, X., Ryu, S. I., Ganguli, S., & Shenoy, K. V. (2019). Accurate estimation of neural population dynamics without spike sorting. Neuron, 103(2), 292–308. https://doi.org/10.1016/j.neuron.2019.05.003
  • Ulbert, I., Halgren, E., Heit, G., & Karmos, G. (2001). Multiple microelectrode-recording system for human intracortical applications. Journal of Neuroscience Methods, 106(1), 69–79. https://doi.org/10.1016/s0165-0270(01)00330-2
  • Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098–1101. https://doi.org/10.1038/nature06996
  • Ventura, V. (2008). Spike train decoding without spike sorting. Neural Computation, 20(4), 923–963. PMID: 18085990; PMCID: PMC3124143. https://doi.org/10.1162/neco.2008.02-07-478
  • Wang, D., Zhang, Q., Li, Y., Wang, Y., Zhu, J., Zhang, S., & Zheng, X. (2014). Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task. Journal of Neural Engineering, 11(3), 036009. https://doi.org/10.1088/1741-2560/11/3/036009
  • Weiss, J. M., Gaunt, R. A., Franklin, R., Boninger, M. L., & Collinger, J. L. (2019). Demonstration of a portable intracortical brain-computer interface. Brain-Computer Interfaces, 6(4), 106–117. https://doi.org/10.1080/2326263X.2019.1709260
  • Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2021). High-performance brain-to-text communication via handwriting. Nature, 593(7858), 249–254. https://doi.org/10.1038/s41586-021-03506-2
  • Willett, F. R., Suminski, A. J., Fagg, A. H., & Hatsopoulos, N. G. (2013). Improving brain-machine interface performance by decoding intended future movements. Journal of Neural Engineering, 10(2), 026011. https://doi.org/10.1088/1741-2560/10/2/026011
  • Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M. L., & Collinger, J. L. (2015). Ten-dimensional anthropomorphic arm control in a human brain-machine interface: Difficulties, solutions, and limitations. Journal of Neural Engineering, 12(1), 016011. https://doi.org/10.1088/1741-2560/12/1/016011
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/s1388-2457(02)00057-3
  • Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., & Black, M. J. (2006). Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Computation, 18(1), 80–118. https://doi.org/10.1162/089976606774841585
  • Yang, Z., Liu, W., Keshtkaran, M. R., Zhou, Y., Xu, J., Pikov, V., Guan, C., & Lian, Y. (2012). A new EC-PC threshold estimation method for in vivo neural spike detection. Journal of Neural Engineering, 9(4), 046017. https://doi.org/10.1088/1741-2560/9/4/046017
  • Zaidi, S., Kocatürk, S., Baykaş, T., & Kocatürk, M. (2022). A behavioral paradigm for cortical control of a robotic actuator by freely moving rats in a one-dimensional two-target reaching task. Journal of Neuroscience Methods, 373, 109555. https://doi.org/10.1016/j.jneumeth.2022.109555
  • Zhuang, J., Truccolo, W., Vargas-Irwin, C., & Donoghue, J. P. (2010). Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex. IEEE Transactions on Bio-Medical Engineering, 57(7), 1774–1784. https://doi.org/10.1109/TBME.2010.2047015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.