77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accuracy of Force Generation and Preparatory Prefrontal Oxygenation in Ballistic Hand Power and Precision Grips

, , , , , & show all
Pages 226-240 | Received 03 Oct 2022, Accepted 03 Nov 2023, Published online: 23 Nov 2023

REFERENCES

  • Adewuyi, A. A., Hargrove, L. J., & Kuiken, T. A. (2016). An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 24(4), 485–494. https://doi.org/10.1109/TNSRE.2015.2424371
  • Ariani, G., Wurm, M. F., & Lingnau, A. (2015). Decoding internally and externally driven movement plans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(42), 14160–14171. https://doi.org/10.1523/JNEUROSCI.0596-15.2015
  • Asahara, R., Endo, K., Liang, N., & Matsukawa, K. (2018). An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. European Journal of Applied Physiology, 118(8), 1689–1702. https://doi.org/10.1007/s00421-018-3901-4
  • Asahara, R., Matsukawa, K., Ishii, K., Liang, N., & Endo, K. (2016). The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command. Journal of Applied Physiology (Bethesda, Md.: 1985), 121(5), 1115–1126. https://doi.org/10.1152/japplphysiol.00401.2016
  • Cooper, D. F., Grimby, G., Jones, D. A., & Edwards, R. H. (1979). Perception of effort in isometric and dynamic muscular contraction. European Journal of Applied Physiology and Occupational Physiology, 41(3), 173–180. https://doi.org/10.1007/BF00430009
  • Dai, T. H., Liu, J. Z., Sahgal, V., Brown, R. W., & Yue, G. H. (2001). Relationship between muscle output and functional MRI-measured brain activation. Experimental Brain Research, 140(3), 290–300. https://doi.org/10.1007/s002210100815
  • Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision- versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83(1), 528–536. https://doi.org/10.1152/jn.2000.83.1.528
  • Ehrsson, H. H., Fagergren, E., & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: An fMRI study. Journal of Neurophysiology, 85(6), 2613–2623. https://doi.org/10.1152/jn.2001.85.6.2613
  • Endo, K., Matsukawa, K., Liang, N., Nakatsuka, C., Tsuchimochi, H., Okamura, H., & Hamaoka, T. (2013). Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. The Journal of Physiological Sciences: JPS, 63(4), 287–298. https://doi.org/10.1007/s12576-013-0267-6
  • Farina, D., & Negro, F. (2015). Common synaptic input to motor neurons, motor unit synchronization, and force control. Exercise and Sport Sciences Reviews, 43(1), 23–33. https://doi.org/10.1249/JES.0000000000000032
  • Faw, B. (2003). Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: A tutorial review. Consciousness and Cognition, 12(1), 83–139. https://doi.org/10.1016/s1053-8100(02)00030-2
  • Gandevia, S. C., Killian, K., McKenzie, D. K., Crawford, M., Allen, G. M., Gorman, R. B., & Hales, J. P. (1993). Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. The Journal of Physiology, 470(1), 85–107. https://doi.org/10.1113/jphysiol.1993.sp019849
  • Hermsdörfer, J., Hagl, E., Nowak, D. A., & Marquardt, C. (2003). Grip force control during object manipulation in cerebral stroke. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 114(5), 915–929. https://doi.org/10.1016/s1388-2457(03)00042-7
  • Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 95–99. https://doi.org/10.1023/b:Brat.0000006333.93597.9d
  • Ishii, K., Liang, N., Asahara, R., Takahashi, M., & Matsukawa, K. (2018). Feedforward- and motor effort-dependent increase in prefrontal oxygenation during voluntary one-armed cranking. The Journal of Physiology, 596(21), 5099–5118. https://doi.org/10.1113/JP276956
  • Ishii, K., Matsukawa, K., Liang, N., Endo, K., Idesako, M., Asahara, R., Kadowaki, A., Wakasugi, R., & Takahashi, M. (2016). Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 120(12), 1424–1433. https://doi.org/10.1152/japplphysiol.00103.2016
  • Jackson, A. W., & Dishman, R. K. (2000). Perceived submaximal force production in young adult males and females. Medicine and Science in Sports and Exercise, 32(2), 448–451. https://doi.org/10.1097/00005768-200002000-00028
  • Jin, Y., Lee, J., Kim, S., & Yoon, B. (2019). Noninvasive brain stimulation over M1 and DLPFC cortex enhances the learning of bimanual isometric force control. Human Movement Science, 66, 73–83. https://doi.org/10.1016/j.humov.2019.03.002
  • Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science (New York, N.Y.), 285(5436), 2136–2139. https://doi.org/10.1126/science.285.5436.2136
  • Kozin, S. H., Porter, S., Clark, P., & Thoder, J. J. (1999). The contribution of the intrinsic muscles to grip and pinch strength. The Journal of Hand Surgery, 24(1), 64–72. https://doi.org/10.1053/jhsu.1999.jhsu24a0064
  • Kuhtz-Buschbeck, J. P., Gilster, R., Wolff, S., Ulmer, S., Siebner, H., & Jansen, O. (2008). Brain activity is similar during precision and power gripping with light force: An fMRI study. NeuroImage, 40(4), 1469–1481. https://doi.org/10.1016/j.neuroimage.2008.01.037
  • Kumar, S., & Simmonds, M. (1994). The accuracy of magnitude production of submaximal precision and power grips and gross motor efforts. Ergonomics, 37(8), 1345–1353. https://doi.org/10.1080/00140139408964913
  • König, P., & Engel, A. K. (1995). Correlated firing in sensory-motor systems. Current Opinion in Neurobiology, 5(4), 511–519. https://doi.org/10.1016/0959-4388(95)80013-1
  • Lafargue, G., & Franck, N. (2009). Effort awareness and sense of volition in schizophrenia. Consciousness and Cognition, 18(1), 277–289. https://doi.org/10.1016/j.concog.2008.05.004
  • Li, L., Li, Y., Wang, H., Chen, W., & Liu, X. (2020). Effect of force level and gender on pinch force perception in healthy adults. i-Perception, 11(3), 2041669520927043. https://doi.org/10.1177/2041669520927043
  • Liang, N., Nakamoto, T., Mochizuki, S., & Matsukawa, K. (2011). Differential contribution of central command to the cardiovascular responses during static exercise of ankle dorsal and plantar flexion in humans. Journal of Applied Physiology (Bethesda, Md.: 1985), 110(3), 670–680. https://doi.org/10.1152/japplphysiol.00740.2010
  • Liang, N., Takahashi, M., Ni, Z., Yahagi, S., Funase, K., Kato, T., & Kasai, T. (2007). Effects of intermanual transfer induced by repetitive precision grip on input-output properties of untrained contralateral limb muscles. Experimental Brain Research, 182(4), 459–467. https://doi.org/10.1007/s00221-007-1004-2
  • Maier, M. A., Bennett, K. M., Hepp-Reymond, M. C., & Lemon, R. N. (1993). Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. Journal of Neurophysiology, 69(3), 772–785. https://doi.org/10.1152/jn.1993.69.3.772
  • Marcora, S. (2009). Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. Journal of Applied Physiology (Bethesda, Md.: 1985), 106(6), 2060–2062. https://doi.org/10.1152/japplphysiol.90378.2008
  • Masakado, Y., Akaboshi, K., Nagata, M., Kimura, A., & Chino, N. (1995). Motor unit firing behavior in slow and fast contractions of the first dorsal interosseous muscle of healthy men. Electroencephalography and Clinical Neurophysiology, 97(6), 290–295. https://doi.org/10.1016/0924-980x(95)00188-q
  • Miyamoto, T., Kizuka, T., & Ono, S. (2020a). Influence of preceding muscle activity on movement-related cortical potential during superimposed ballistic contraction. Neuroscience Letters, 735, 135193. https://doi.org/10.1016/j.neulet.2020.135193
  • Miyamoto, T., Kizuka, T., & Ono, S. (2020b). The influence of contraction types on the relationship between the intended force and the actual force. Journal of Motor Behavior, 52(6), 687–693. https://doi.org/10.1080/00222895.2019.1680947
  • Muir, R. B., & Lemon, R. N. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316. https://doi.org/10.1016/0006-8993(83)90635-2
  • Ni, Z., Liang, N., Takahashi, M., Yamashita, T., Yahagi, S., Tanaka, Y., Tsuji, T., & Kasai, T. (2006). Motor strategies and excitability changes of human hand motor area are dependent on different voluntary drives. The European Journal of Neuroscience, 23(12), 3399–3406. https://doi.org/10.1111/j.1460-9568.2006.04852.x
  • Nicholls, M. E., Thomas, N. A., Loetscher, T., & Grimshaw, G. M. (2013). The Flinders Handedness survey (FLANDERS): A brief measure of skilled hand preference. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 49(10), 2914–2926. https://doi.org/10.1016/j.cortex.2013.02.002
  • Okubo, M., Suzuki, H., & Nicholls, M. E. (2014). A Japanese version of the FLANDERS handedness questionnaire. Shinrigaku Kenkyu: The Japanese Journal of Psychology, 85(5), 474–481. https://doi.org/10.4992/jjpsy.85.13235
  • Palmer, E., & Ashby, P. (1992). Corticospinal projections to upper limb motoneurones in humans. The Journal of Physiology, 448(1), 397–412. https://doi.org/10.1113/jphysiol.1992.sp019048
  • Pedersen, J. R., Johannsen, P., Bak, C. K., Kofoed, B., Saermark, K., & Gjedde, A. (1998). Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET. Neuroimage, 8(2), 214–220. https://doi.org/10.1006/nimg.1998.0362
  • Perez, M. A., & Cohen, L. G. (2009). Scaling of motor cortical excitability during unimanual force generation. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 45(9), 1065–1071. https://doi.org/10.1016/j.cortex.2008.12.006
  • Rossi, S., Cappa, S. F., Babiloni, C., Pasqualetti, P., Miniussi, C., Carducci, F., Babiloni, F., & Rossini, P. M. (2001). Prefrontal [correction of Prefontal] cortex in long-term memory: An “interference” approach using magnetic stimulation. Nature Neuroscience, 4(9), 948–952. https://doi.org/10.1038/nn0901-948
  • Semmler, J. G. (2002). Motor unit synchronization and neuromuscular performance. Exercise and Sport Sciences Reviews, 30(1), 8–14. https://doi.org/10.1097/00003677-200201000-00003
  • Tazoe, T., & Perez, M. A. (2017). Cortical and reticular contributions to human precision and power grip. The Journal of Physiology, 595(8), 2715–2730. https://doi.org/10.1113/JP273679
  • Umaba, C., Mineharu, Y., Liang, N., Mizota, T., Yamawaki, R., Ueda, M., Yamao, Y., Nankaku, M., Miyamoto, S., Matsuda, S., Inadomi, H., & Arakawa, Y. (2022). Intraoperative hand strength as an indicator of consciousness during awake craniotomy: A prospective, observational study. Scientific Reports, 12(1), 216. https://doi.org/10.1038/s41598-021-04026-9
  • Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. NeuroImage, 36(3), 793–803. https://doi.org/10.1016/j.neuroimage.2007.03.002
  • Wasson, P., Prodoehl, J., Coombes, S. A., Corcos, D. M., & Vaillancourt, D. E. (2010). Predicting grip force amplitude involves circuits in the anterior basal ganglia. NeuroImage, 49(4), 3230–3238. https://doi.org/10.1016/j.neuroimage.2009.11.047
  • West, S. J., Smith, L., Lambert, E. V., Noakes, T. D., & St Clair Gibson, A. (2005). Submaximal force production during perceptually guided isometric exercise. European Journal of Applied Physiology, 95(5-6), 537–542. https://doi.org/10.1007/s00421-005-0004-9
  • Williams, W. N., Hanson, C. S., Crary, M. A., & Wharton, P. W. (1991). Human pinch-force discrimination. Perceptual and Motor Skills, 73(2), 663–672. https://doi.org/10.2466/pms.1991.73.2.663
  • Yao, W., Fuglevand, R. J., & Enoka, R. M. (2000). Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. Journal of Neurophysiology, 83(1), 441–452. https://doi.org/10.1152/jn.2000.83.1.441
  • Yoneda, T., Oishi, K., & Ishida, A. (1983). Variation of amount of muscle discharges during ballistic isometric voluntary contraction in man. Brain Research, 275(2), 305–309. https://doi.org/10.1016/0006-8993(83)90991-5
  • Zhang, N., Li, K., Li, G., Nataraj, R., & Wei, N. (2021). Multiplex recurrence network analysis of inter-muscular coordination during sustained grip and pinch contractions at different force levels. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society, 29, 2055–2066. https://doi.org/10.1109/TNSRE.2021.3117286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.