80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bilateral Transfer of a Visuomotor Task in Different Workspace Configurations

ORCID Icon & ORCID Icon
Pages 290-304 | Received 25 May 2022, Accepted 19 Nov 2023, Published online: 18 Dec 2023

REFERENCES

  • Beurze, S. M., Van Pelt, S., & Medendorp, W. P. (2006). Behavioral reference frames for planning human reaching movements. Journal of Neurophysiology, 96(1), 352–362. https://doi.org/10.1152/jn.01362.2005
  • Blangero, A., Ota, H., Delporte, L., Revol, P., Vindras, P., Rode, G., Boisson, D., Vighetto, A., Rossetti, Y., & Pisella, L. (2007). Optic ataxia is not only 'optic’: Impaired spatial integration of proprioceptive information. NeuroImage, 36(Suppl 2), T61–68. https://doi.org/10.1016/j.neuroimage.2007.03.039
  • Bock, O. (2005). Components of sensorimotor adaptation in young and elderly subjects. Experimental Brain Research, 160(2), 259–263. https://doi.org/10.1007/s00221-004-2133-5
  • Bock, O., & Schneider, S. (2002). Sensorimotor adaptation in young and elderly humans. Neuroscience and Biobehavioral Reviews, 26(7), 761–767. https://doi.org/10.1016/s0149-7634(02)00063-5
  • Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95(1), 49–90. https://doi.org/10.1037/0033-295x.95.1.49
  • Carroll, T. J., Poh, E., & de Rugy, A. (2014). New visuomotor maps are immediately available to the opposite limb. Journal of Neurophysiology, 111(11), 2232–2243. https://doi.org/10.1152/jn.00042.2014
  • Carson, R. G., Chua, R., Elliott, D., & Goodman, D. (1990). The contribution of vision to asymmetries in manual aiming. Neuropsychologia, 28(11), 1215–1220. https://doi.org/10.1016/0028-3932(90)90056-t
  • Dijkerman, H. C., & Milner, A. D. (1998). The perception and prehension of objects oriented in the depth plane. II. Dissociated orientation functions in normal subjects. Experimental Brain Research, 118(3), 408–414. https://doi.org/10.1007/s002210050294
  • Gandolfo, F., Mussa-Ivaldi, F. A., Bizzi, E., Gandolfo, F., & Gandolfo, F. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 3843–3846. https://doi.org/10.1073/pnas.93.9.3843
  • Gaveau, V., Prablanc, C., Laurent, D., Rossetti, Y., & Priot, A. E. (2014). Visuomotor adaptation needs a validation of prediction error by feedback error. Frontiers in Human Neuroscience, 8, 880. https://doi.org/10.3389/fnhum.2014.00880
  • Gentili, R., Papaxanthis, C., & Pozzo, T. (2006). Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience, 137(3), 761–772. https://doi.org/10.1016/j.neuroscience.2005.10.013
  • Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623), 392–395. https://doi.org/10.1038/386392a0
  • Ghilardi, M. F., Gordon, J., & Ghez, C. (1995). Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. Journal of Neurophysiology, 73(6), 2535–2539. https://doi.org/10.1152/jn.1995.73.6.2535
  • Gordon, J., Ghilardi, M. F., & Ghez, C. (1994). Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research, 99(1), 97–111. https://doi.org/10.1007/BF00241415
  • Han, J., Anson, J., Waddington, G., & Adams, R. (2013). Proprioceptive performance of bilateral upper and lower limb joints: Side-general and site-specific effects. Experimental Brain Research, 226(3), 313–323. https://doi.org/10.1007/s00221-013-3437-0
  • Heuer, H., & Hegele, M. (2011). Generalization of implicit and explicit adjustments to visuomotor rotations across the workspace in younger and older adults. Journal of Neurophysiology, 106(4), 2078–2085. https://doi.org/10.1152/jn.00043.2011
  • Izawa, J., Rane, T., Donchin, O., & Shadmehr, R. (2008). Motor adaptation as a process of reoptimization. The Journal of Neuroscience, 28(11), 2883–2891. https://doi.org/10.1523/JNEUROSCI.5359-07.2008
  • Khan, A. Z., Pisella, L., Rossetti, Y., Vighetto, A., & Crawford, J. D. (2005). Impairment of gaze-centered updating of reach targets in bilateral parietal-occipital damaged patients. Cerebral Cortex, 15(10), 1547–1560. https://doi.org/10.1093/cercor/bhi033
  • Kobak, E. M., & Cardoso de Oliveira, S. (2014). There and back again: Putting the vectorial movement planning hypothesis to a critical test. PeerJ. 2, e342. https://doi.org/10.7717/peerj.342
  • Krakauer, J. W. (2009). Motor learning and consolidation: The case of visuomotor rotation. Advances in Experimental Medicine and Biology, 629, 405–421. https://doi.org/10.1007/978-0-387-77064-2_21
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience, 20(23), 8916–8924. https://www.ncbi.nlm.nih.gov/pubmed/11102502 https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
  • Krishnan, C., Ranganathan, R., & Tetarbe, M. (2017). Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer. Gait & Posture, 56, 24–30. https://doi.org/10.1016/j.gaitpost.2017.04.032
  • Lei, Y., Johnson, M. J., & Wang, J. (2013). Separation of visual and motor workspaces during targeted reaching results in limited generalization of visuomotor adaptation. Neuroscience Letters, 541, 243–247. https://doi.org/10.1016/j.neulet.2013.02.045
  • Miall, C. (2002). Modular motor learning. Trends in Cognitive Sciences, 6(1), 1–3. https://doi.org/10.1016/s1364-6613(00)01822-2
  • Muslimovic, D., Post, B., Speelman, J. D., & Schmand, B. (2007). Motor procedural learning in Parkinson’s disease. Brain, 130(Pt 11), 2887–2897. https://doi.org/10.1093/brain/awm211
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Pan, Z., & Van Gemmert, A. W. (2013a). The direction of bilateral transfer depends on the performance parameter. Human Movement Science, 32(5), 1070–1081. https://doi.org/10.1016/j.humov.2012.02.013
  • Pan, Z., & Van Gemmert, A. W. (2013b). The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task. Experimental Brain Research, 229(4), 621–633. https://doi.org/10.1007/s00221-013-3625-y
  • Parlow, S. E., & Kinsbourne, M. (1989). Asymmetrical transfer of training between hands: Implications for interhemispheric communication in normal brain. Brain and Cognition, 11(1), 98–113. https://doi.org/10.1016/0278-2626(89)90008-0
  • Pearson, T. S., Krakauer, J. W., & Mazzoni, P. (2010). Learning not to generalize: Modular adaptation of visuomotor gain. Journal of Neurophysiology, 103(6), 2938–2952. https://doi.org/10.1152/jn.01089.2009
  • Pine, Z. M., Krakauer, J. W., Gordon, J., & Ghez, C. (1996). Learning of scaling factors and reference axes for reaching movements. Neuroreport, 7(14), 2357–2361. https://doi.org/10.1097/00001756-199610020-00016
  • Prablanc, C., & Jeannerod, M. (1975). Corrective saccades: Dependence on retinal reafferent signals. Vision Research, 15(4), 465–469. https://doi.org/10.1016/0042-6989(75)90022-x
  • Przybyla, A., Coelho, C. J., Akpinar, S., Kirazci, S., & Sainburg, R. L. (2013). Sensorimotor performance asymmetries predict hand selection. Neuroscience, 228, 349–360. https://doi.org/10.1016/j.neuroscience.2012.10.046
  • Sabin, M. J., Ebersole, K. T., Martindale, A. R., Price, J. W., & Broglio, S. P. (2010). Balance performance in male and female collegiate basketball athletes: Influence of testing surface. Journal of Strength and Conditioning Research, 24(8), 2073–2078. https://doi.org/10.1519/JSC.0b013e3181ddae13
  • Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142(2), 241–258. https://doi.org/10.1007/s00221-001-0913-8
  • Sainburg, R. L., & Wang, J. (2002). Interlimb transfer of visuomotor rotations: independence of direction and final position information. Experimental Brain Research, 145(4), 437–447. https://doi.org/10.1007/s00221-002-1140-7
  • Seidler, R. D. (2010). Neural correlates of motor learning, transfer of learning, and learning to learn. Exercise and Sport Sciences Reviews, 38(1), 3–9. https://doi.org/10.1097/JES.0b013e3181c5cce7
  • Sousa, A. S., Silva, A., & Tavares, J. M. (2013). Interlimb relation during the double support phase of gait: An electromyographic, mechanical and energy-based analysis. Proceedings of the Institution of Mechanical Engineers, 227(3), 327–333. https://doi.org/10.1177/0954411912473398
  • Sousa, A. S. P., Silva, A., Santos, R., Sousa, F., & Tavares, J. (2013). Interlimb coordination during the stance phase of gait in subjects with stroke. Archives of Physical Medicine and Rehabilitation, 94(12), 2515–2522. https://doi.org/10.1016/j.apmr.2013.06.032
  • Thomas, M., & Bock, O. (2012). Concurrent adaptation to four different visual rotations. Experimental Brain Research, 221(1), 85–91. https://doi.org/10.1007/s00221-012-3150-4
  • van der Kooij, K., Oostwoud Wijdenes, L., Rigterink, T., Overvliet, K. E., & Smeets, J. B. J. (2019). Correction: Reward abundance interferes with error-based learning in a visuomotor adaptation task. PLoS One, 14(9), e0223088. https://doi.org/10.1371/journal.pone.0223088
  • Van Gemmert, A. W., Teulings, H. L., & Stelmach, G. E. (1998). The influence of mental and motor load on handwriting movements in parkinsonian patients. Acta Psychologica, 100(1–2), 161–175. https://doi.org/10.1016/s0001-6918(98)00032-8
  • Velay, J. L., & Benoit-Dubrocard, S. (1999). Hemispheric asymmetry and interhemispheric transfer in reaching programming. Neuropsychologia, 37(8), 895–903. https://doi.org/10.1016/s0028-3932(98)00149-3
  • Velay, J. L., Daffaure, V., Raphael, N., & Benoit-Dubrocard, S. (2001). Hemispheric asymmetry and interhemispheric transfer in pointing depend on the spatial components of the movement. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 37(1), 75–90. https://doi.org/10.1016/s0010-9452(08)70559-8
  • Vetter, P., Goodbody, S. J., & Wolpert, D. M. (1999). Evidence for an eye-centered spherical representation of the visuomotor map. Journal of Neurophysiology, 81(2), 935–939. https://doi.org/10.1152/jn.1999.81.2.935
  • Vindras, P., & Viviani, P. (1998). Frames of reference and control parameters in visuomanual pointing. Journal of Experimental Psychology. Human Perception and Performance, 24(2), 569–591. https://doi.org/10.1037//0096-1523.24.2.569
  • Wang, J. (2008). A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Experimental Brain Research, 187(3), 483–490. https://doi.org/10.1007/s00221-008-1393-x
  • Wang, J., & Sainburg, R. L. (2004). Interlimb transfer of novel inertial dynamics is asymmetrical. Journal of Neurophysiology, 92(1), 349–360. https://doi.org/10.1152/jn.00960.2003
  • Wang, J., & Sainburg, R. L. (2005). Adaptation to visuomotor rotations remaps movement vectors, not final positions. The Journal of Neuroscience, 25(16), 4024–4030. https://doi.org/10.1523/JNEUROSCI.5000-04.2005
  • Wang, J., & Sainburg, R. L. (2006). The symmetry of interlimb transfer depends on workspace locations. Experimental Brain Research, 170(4), 464–471. https://doi.org/10.1007/s00221-005-0230-8
  • Welch, R. B., Bridgeman, B., Anand, S., & Browman, K. E. (1993). Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Perception & Psychophysics, 54(2), 195–204. https://doi.org/10.3758/bf03211756
  • Woolley, D. G., Tresilian, J. R., Carson, R. G., & Riek, S. (2007). Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 179(2), 155–165. https://doi.org/10.1007/s00221-006-0778-y
  • Yeom, K. S., & Choi, Y. S. (2011). Full endoscopic contralateral transforaminal discectomy for distally migrated lumbar disc herniation. Journal of Orthopaedic Science, 16(3), 263–269. https://doi.org/10.1007/s00776-011-0048-0
  • Zemmar, A., Weinmann, O., Kellner, Y., Yu, X., Vicente, R., Gullo, M., Kasper, H., Lussi, K., Ristic, Z., Luft, A. R., Rioult-Pedotti, M., Zuo, Y., Zagrebelsky, M., & Schwab, M. E. (2014). Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. The Journal of Neuroscience, 34(26), 8685–8698. https://doi.org/10.1523/JNEUROSCI.3817-13.2014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.