64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lightweight Heat Pipe Radiator for Nuclear Reactor Power Systems on Lunar Surface

ORCID Icon &
Received 18 Feb 2024, Accepted 05 Mar 2024, Published online: 19 Apr 2024

References

  • M. RUCKER, “Integrated Surface Power Strategy for Mars,” Proc. Nuclear and Emerging Technologies for Space 2015 (NETS), Albuquerque, New Mexico, February 23–26, 2015, American Nuclear Society (2015).
  • L. KALDON, “Overview of NASA Fission Surface Power,” Proc. Nuclear and Emerging Technologies for Space 2023 (NETS), Idaho Falls, Idaho, May 7–11, 2023, American Nuclear Society (2023).
  • J. ANGELO JR. and D. BUDEN, Space Nuclear Power, pp. 159–176, Orbit Book Company, Malabar, Florida (1985).
  • A. MARRIOTT and T. FUJITA, “Evolution of SP-100 System Designs,” AIP Conf. Proc., 301, 157 (1994).
  • T. M. SCHRIENER and M. S. EL-GENK, “Thermal-Hydraulics and Safety Analyses of the Solid Core-Sectored Compact Reactor (SC-SCoRe) and Power System,” Prog. Nucl. Energy, 76, 216 (2014); http://dx.doi.org/10.1016/j.pnucene.2014.05.020.
  • M. S. EL-GENK and J.-M. TOURNIER, “Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System,” AIP Conf. Proc., 699, 793 (2004).
  • M. S. EL-GENK and J.-M. TOURNIER, “‘SAIRS’—Scalable AMTEC Integrated Reactor Space Power System,” J. Prog. Nucl. Energy, 45, 25 (2004); http://dx.doi.org/10.1016/j.pnucene.2004.08.002.
  • L. MASON, D. POSTON, and L. QUALLS, “System Concepts for Affordable Fission Surface Power,” NASA/TM-2008-215166, NASA Glenn Research Center (2008).
  • K. L. LEE et al., “Titanium-Water Heat Pipe Radiators for Space Fission Power System Thermal Management,” Microgravity Sci. Technol., 32, 453 (2020); http://dx.doi.org/10.1007/s12217-020-09780-5.
  • D. I. POSTON, “The Heat Pipe-Operated Mars Exploration Reactor (HOMER),” AIP Conf. Proc., 552, 797 (2001).
  • R. HARTY and L. MASON, “100 kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion,” AIP Conf. Proc., 271, 1065 (1993).
  • M. J. WOLLMAN and M. J. ZIKA, “Prometheus Project Reactor Module Final Report,” SPP-67110-0008, Knolls Atomic Power Laboratory and Bettis Atomic Power Laboratory (2006).
  • J. SIAMIDIS and L. S. MASON, “A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems,” NASA/TM-2006-214121, NASA Glenn Research Center (2006).
  • J. ELLIOTT et al., “Prometheus—Project Lunar Fission Surface Power System Study Report,” JPL-982-R66153, NASA Jet Propulsion Laboratory (2005).
  • M. S. EL-GENK, J.-M. TOURNIER, and B. M. GALLO, “Dynamic Simulation of a Space Reactor System with Closed Brayton Cycle Loops,” J. Propul. Power, 26, 3, 394 (2010); http://dx.doi.org/10.2514/1.46262.
  • M. S. EL-GENK and J.-M. TOURNIER, “High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System,” AIP Conf. Proc., 813, 716 (2006).
  • D. I. POSTON, R. J. KAPERNICK, and R. M. GUFFEE, “Design and Analyses of the SAFE-400 Space Fission Reactor,” AIP Conf. Proc., 608, 578 (2002).
  • M. S. EL-GENK and J.-M. TOURNIER, “Performance Comparison of Potassium and Sodium Vapor Anode, Multi-Tube AMTEC Converters,” J. Energy Convers. Manage., 43, 1931 (2002); http://dx.doi.org/10.1016/S0196-8904(01)00142-X.
  • “Space Technology Research Grants Program, Early-Stage Innovations Appendix,” 80HQTR21NOA01-21ESI-B2, NASA Space Technology Mission Directorate (2021).
  • M. S. EL-GENK et al., “Advanced Lightweight Heat Rejection Radiators for Space Nuclear Power Systems Year 1 ESI Continuation Review Grant Performance Summary,” Technical Report 21 ESI-0049-1, The University of New Mexico Institute for Space and Nuclear Power Studies (2022).
  • S. A. HATTON and M. S. EL-GENK, “Sectored Compact Space Reactor (SCoRe) Concepts with a Supplementary Lunar Regolith Reflector,” Prog. Nucl. Energy, 51, 93 (2009); http://dx.doi.org/10.1016/j.pnucene.2007.12.003.
  • M. S. EL-GENK, “Deployment History and Design Considerations for Space Reactor Power Systems,” Acta Astronaut., 64, 9–10, 833 (2009); http://dx.doi.org/10.1016/j.actaastro.2008.12.016.
  • M. S. EL-GENK and T. M. SCHRIENER, “Design and Analyses of Lightweight Radiator Module for Nuclear Reactor Lunar Surface Power,” Proc. AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND 2023), Las Vegas, Nevada, October 23–25, 2023, American Institute of Aeronautics and Astronautics (2023).
  • M. S. EL-GENK, T. M. SCHRIENER, and O. ANDEROGLU, “Advanced Lightweight Heat Rejection Radiators for Space Nuclear Power Systems Year 2 ESI Continuation Review Grant Performance Summary,” Technical Report 21 ESI-0049-1, The University of New Mexico Institute for Space and Nuclear Power Studies (2023).
  • STAR-CCM+ website, SIEMENS PLM (2021); https://plm.sw.siemens.com/.
  • P. G. KLEMENS and D. F. PEDRAZA, “Thermal Conductivity of Graphite in the Basal Plane,” Carbon, 32, 4, 735 (1994); http://dx.doi.org/10.1016/0008-6223(94)90096-5.
  • M. GRUJICIC et al., “Hypervelocity Impact Resistance of Reinforced Carbon–Carbon/Carbon–Foam Thermal Protection Systems,” Appl. Surf. Sci., 252, 5035 (2006); http://dx.doi.org/10.1016/j.apsusc.2005.07.047.
  • W. H. XIE et al., “High Velocity Impact Tests on High Temperature Carbon-Carbon Composites,” Composites Part B, 98, 30 (2016); http://dx.doi.org/10.1016/j.compositesb.2016.05.031.
  • J.-M. TOURNIER and M. S. EL-GENK, “Current Capabilities of ‘HPTAM’ for Modeling High-Temperature Heat Pipes Startup from a Frozen State,” AIP Conf. Proc., 608, 139 (2002).
  • M. S. EL-GENK and J.-M. TOURNIER, “Challenges and Fundamentals of Modeling Heat Pipes Startup from a Frozen State,” AIP Conf. Proc., 608, 127 (2002).
  • A. E. SCHEIDEGGER, The Physics of Flow Through Porous Media, 3rd ed., University of Toronto Press, Toronto, Canada (1974).
  • J.-M. TOURNIER and M. S. EL-GENK, “Transient Analysis of the Startup of a Water Heat Pipe from a Frozen State,” J. Numer. Heat Transfer Part A, 28, 461 (1995); http://dx.doi.org/10.1080/10407789508913756.
  • S. V. PATANKAR, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Company, Washington, D.C. (1980).
  • A. M. FAGHRI, M. BUCHKO, and Y. CAO, “A Study of High Temperature Heat Pipes with Multiple Heat Sources and Sinks, Part I: Experimental Methodology and Frozen Startup Profiles,” ASME J. Heat Transfer, 113, 4, 1003 (1991); http://dx.doi.org/10.1115/1.2911193.
  • R. S. REID et al., “Heat Pipe Development for Advanced Energy Transport Concepts, Phase II—Progress Report Covering the Period October 1, 1997, to September 30, 1998,” LA-13549-PR, Los Alamos National Laboratory (1999).
  • R. C. WERNER, E. C. KING, and R. A. TIDBALL, “Heat Transfer with Sodium–Potassium Liquid Alloys,” presented at Annual Meeting of American Institute of Chemical Engineers, Pittsburgh, Pennsylvania, December 5, 1949.
  • X. CHENG and N. I. TAK, “Investigation on Turbulent Heat Transfer to Lead–Bismuth Eutectic Flows in Circular Tubes of Nuclear Applications,” J. Nucl. Eng. Des., 236, 385 (2006); http://dx.doi.org/10.1016/j.nucengdes.2005.09.006.
  • L. CHANDRA et al., “A Stepwise Development and Validation of a RANS Based CFD Modeling Approach for the Hydraulic and Thermal-Hydraulic Analysis of Liquid Metal Flow in a Fuel Assembly,” J. Nucl. Eng. Des., 239, 1988 (2009); http://dx.doi.org/10.1016/j.nucengdes.2009.05.022.
  • G. GRÖTZBACH, “Challenges in Low-Prandtl Number Heat Transfer Simulation and Modeling,” J. Nucl. Eng. Des., 264, 41 (2013); http://dx.doi.org/10.1016/j.nucengdes.2012.09.039.
  • A. J. REYNOLDS, “The Prediction of Turbulent Prandtl and Schmidt Numbers,” Int. J. Heat Mass Transfer, 18, 1055 (1975); http://dx.doi.org/10.1016/0017-9310(75)90223-9.
  • T. M. SCHRIENER and M. S. EL-GENK, “Convection Heat Transfer of NaK-78 Liquid Metal in a Circular Tube and a Tri-Lobe Channel,” Int. J. Heat Mass Transfer, 86, 234 (2015); http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.02.065.
  • V. D. TALANOV and P. A. USHAKOV, “Study of Heat Transfer in Liquid Metals in Round Pipes,” Liquid Metals, pp. 5–7, P. L. KIRILLOV, V. I. SUBBOTIN, and P. A. USHAKOV, Eds., Atomizdat, Moscow (1967).
  • G. P. PETERSON, An Introduction to Heat Pipes: Modeling, Testing, and Applications, John Wiley & Sons, New York (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.