Publication Cover
Science Activities
Projects and Curriculum Ideas in STEM Classrooms
Latest Articles
50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A metaconceptually-enriched argumentation activity for creating the scientific understanding: example of simple electrical circuits

&

References

  • Abimbola, I. O. 1988. The problem of terminology in the study of student conceptions in science. Science Education 72 (2):175–84. doi: 10.1002/sce.3730720206.
  • Alexander, J. M., K. E. Johnson, J. Albano, T. Freygang, and B. Scott. 2006. Relations between intelligence and the development of metaconceptual knowledge. Metacognition and Learning 1 (1):51–67. doi: 10.1007/s11409-006-6586-8.
  • Antonio, R. P., and M. S. Prudente. 2021. Metacognitive argument-driven inquiry in teaching antimicrobial resistance: Effects on students’ conceptual understanding and argumentation skills. Journal of Turkish Science Education 18 (2):192–217.
  • Beeth, M. E. 1998. Facilitating conceptual change learning: The need for teachers to support metacognition. Journal of Science Teacher Education 9 (1):49–61. doi: 10.1023/A:1009417622756.
  • Colburn, A. 2007. The prepared practitioner: Constructivism and conceptual change, part I. The Science Teacher 74 (7):10.
  • Demircioglu, T., M. Karakus, and S. Ucar. 2022. The impact of augmented reality-based argumentation activities on middle school students’ academic achievement and motivation in science classes. Education Quarterly Reviews 5 (1):22–34. doi: 10.31014/aior.1993.05.02.464.
  • Driver, R., andJ. Easley. 1978. Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education 5 (1):61–84. doi: 10.1080/03057267808559857.
  • Driver, R., P. Newton, and J. Osborne. 2000. Establishing the norms of scientific argumentation in classrooms. Science Education 84 (3):287–312. doi: 10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A.
  • Duschl, R., and J. Osborne. 2002. Supporting and promoting argumentation discourse. Studies in Science Education 38 (1):39–72. doi: 10.1080/03057260208560187.
  • Engelhardt, P. V., and R. J. Beichner. 2004. Students’ understanding of direct current resistive electrical circuits. American Journal of Physics 72 (1):98–115. doi: 10.1119/1.1614813.
  • Erduran, S. 2007. Methodological foundations in the study of argumentation in science classrooms. In Argumentation in science education: Perspectives from classroom-based research, ed. S. Erduran and M. P. Jiménez-Aleixandre, 47–69. Dordrecht, NL: Springer.
  • Georghiades, P. 2004. Making pupils’ conceptions of electricity more durable by means of situated metacognition. International Journal of Science Education 26 (1):85–99. doi: 10.1080/0950069032000070333.
  • Gunstone, R. F., and I. J. Mitchell. 2005., and Metacognition and conceptual change. In Teaching for science education: A human constructivist view, ed. J. L. Mintzes, J. H. Wandersee, and J. D. Novak, 133–163. San Diego, CA: Academic Press.
  • Halloun, I. A., andD. Hestenes. 1985. Common sense concepts about motion. American Journal of Physics 53 (11):1056–65. doi: 10.1119/1.14031.
  • Hammer, D. 1996. Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences 5 (2):97–127. doi: 10.1207/s15327809jls0502_1.
  • Hashweh, M. 1988. Descriptive studies of students’ conceptions in science. Journal of Research in Science Teaching 25 (2):121–34.
  • Hennessey, G. 2003. Metacognitive aspects of students’ reflective discourse: Implications for intentional conceptual change teaching and learning. In Intentional conceptual change, ed. G. M. Sinatra and P. R. Pintrich, 105–134. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Huang, K., X. Ge, and D. Eseryel. 2017. Metaconceptually-enhanced simulation-based inquiry: Effects on eighth grade students’ conceptual change and science epistemic beliefs. Educational Technology Research and Development 65 (1):75–100. doi: 10.1007/s11423-016-9462-5.
  • Hynd, C., and D. E. Alvermann. 1986. The role of refutation text in overcoming difficulty with science concepts. Journal of Reading 29 (5):440–446.
  • Limon Luque, M. 2003. The role of domain-specific knowledge in intentional conceptual change. In Intentional conceptual change, ed. G. M. Sinatra and P. R. Pintrich, 135–172. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Mason, L., and M. Santi. 1994. Argumentation structure and metacognition in constructing shared knowledge at school. Paper presented at the meeting of the American Educational Research Association, New Orleans, LA, USA, April 4–8.
  • Memiş, E. K., and R. B. Aydın. 2022. The effect of argumentation-based inquiry approach supported by metacognitive activities on science achievement of preservice teachers. Kastamonu Education Journal 30 (3):520–535.
  • Moodley, K., and E. Gaigher. 2019. Teaching electric circuits: Teachers’ perceptions and learners’ misconceptions. Research in Science Education 49 (1):73–89. doi: 10.1007/s11165-017-9615-5.
  • NRC (National Research Council). 2012. A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • NGSS Lead States. 2013. Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Novak, J. D. 2002. Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education 86 (4):548–571. doi: 10.1002/sce.10032.
  • Nussbaum, E. M., and G. M. Sinatra. 2003. Argument and conceptual engagement. Contemporary Educational Psychology 28 (3):384–395. doi: 10.1016/S0361-476X(02)00038-3.
  • van Opstal, M. T., and P. L. Daubenmire. 2015. Extending students’ practice of metacognitive regulation skills with the science writing heuristic. International Journal of Science Education 37 (7):1089–1112. doi: 10.1080/09500693.2015.1019385.
  • Osborne, J., S. Erduran, and S. Simon. 2004a. Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching 41 (10):994–1020. doi: 10.1002/tea.20035.
  • Osborne, J., S. Erduran, and S. Simon. 2004b. IDeas, evidence, and argument in science. London: King’s College London.
  • Parker, J., andD. Heywood. 1998. The earth and beyond: developing primary teachers’ understanding of basic astronomical events. International Journal of Science Education 20 (5):503–20. doi: 10.1080/0950069980200501.
  • Peşman, H., and A. Eryılmaz. 2010. Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research 103 (3):208–222. doi: 10.1080/00220670903383002.
  • Posner, G. J., K. A. Strike, P. W. Hewson, and W. A. Gertzog. 1982. Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66 (2):211–227. doi: 10.1002/sce.3730660207.
  • von Rhöneck, C., and K. Grob. 1987. Representation and problem-solving in basic electricity, predictors for successful learning. In Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, ed. J. D. Novak, 564. New York, NY: Cornell Univ.
  • Vosniadou, S. 1994. Capturing and modeling the process of conceptual change. Learning and Instruction 4 (1):45–69. doi: 10.1016/0959-4752(94)90018-3.
  • Scott, P. H., H. M. Asoko, and R. H. Driver. 1992. Teaching for conceptual change: A review of strategies. In Research in physics learning: Theoretical issues and empirical studies, ed. R. Duit, F. Goldberg, and H. Niederer, 310–329. Kiel: IPN.
  • Sellmann, D., A. K. Liefländer, and F. X. Bogner. 2015. Concept maps in the classroom: A new approach to reveal students’ conceptual change. The Journal of Educational Research 108 (3):250–257. doi: 10.1080/00220671.2014.896315.
  • Serttaş, S., and A. Y. Yenilmez-Türkoğlu. 2020. Diagnosing students’ misconceptions of astronomy through concept cartoons. Participatory Educational Research 7 (2):164–182. doi: 10.17275/per.20.27.7.2.
  • Tahir, F. M., N. M. Nasri, and L. Halim. 2020. The effectiveness of predict-observe-explain-animation (POE-A) strategy to overcome students’ misconceptions about electric circuits concepts. Learning Science and Mathematics 15:1–15.
  • Tao, P. K., and R. F. Gunstone. 1999. The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching 36 (7):859–882. doi: 10.1002/(SICI)1098-2736(199909)36:7<859::AID-TEA7>3.0.CO;2-J.
  • Tippett, C. 2009. Argumentation: The language of science. Journal of Elementary Science Education 21 (1):17–25. doi: 10.1007/BF03174713.
  • Toulmin, S. 1958. The uses of argument. Cambridge: Cambridge University Press.
  • Vosniadou, S. 2007. The conceptual change approach and its re-framing. In Reframing the conceptual change approach in learning and instruction, ed. S. Vosniadou, A. Baltos, and X. Vamvakoussi, 1–15. Oxford: Elsevier.
  • Wandersee, J. H. 1986. Can the history of science help science educators anticipate students’ misconceptions?. Journal of Research in Science Teaching 23 (7):581–97. doi: 10.1002/tea.3660230703.
  • Wang, J. C., and T. H. Wang. 2023. Learning effectiveness of energy education in junior high schools: Implementation of action research and the predict–observe–explain model to STEM course. Heliyon 9 (3):e14058. doi: 10.1016/j.heliyon.2023.e14058.
  • White, R., and R. Gunstone. 2014. Probing understanding. London: Routledge.
  • Wu, X., R. C. Anderson, K. Nguyen-Jahiel, and B. Miller. 2013. Enhancing motivation and engagement through collaborative discussion. Journal of Educational Psychology 105 (3):622–632. doi: 10.1037/a0032792.
  • Yerdelen-Damar, S., and A. Eryılmaz. 2021. Promoting conceptual understanding with explicit epistemic intervention in metacognitive instruction: Interaction between the treatment and epistemic cognition. Research in Science Education 51 (2):547–575. doi: 10.1007/s11165-018-9807-7.
  • Yuruk, N. 2005. An analysis of the nature of students’ metaconceptual processes and the effectiveness of metaconceptual teaching practices on students’ conceptual understanding of force and motion. PhD diss., The Ohio State University.
  • Yuruk, N., M. E. Beeth, and C. Andersen. 2009. Analyzing the effect of metaconceptual teaching practices on students’ understanding of force and motion concepts. Research in Science Education 39 (4):449–475. doi: 10.1007/s11165-008-9089-6.
  • Yürük, N. 2007. A case study of one student’s metaconceptual process and the changes in her alternative conceptions of force and motion. EURASIA Journal of Mathematics, Science and Technology Education 3 (4):305–325. doi: 10.12973/ejmste/75411.
  • Zhou, G. 2010. Conceptual change in science: A process of argumentation. EURASIA Journal of Mathematics, Science and Technology Education 6 (2):101–110. doi: 10.12973/ejmste/75231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.