Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 57, 2024 - Issue 4
59
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An insight into the co-doping effect of d-d transitions of transition metal ions and hypersensitivity of rare-earth ions in multicomponent glass-system

, &
Pages 222-236 | Received 25 Jan 2024, Accepted 17 Apr 2024, Published online: 27 Apr 2024

References

  • Eraiah, B.; G. Bhat, S. Optical Properties of Samarium Doped Zinc–Phosphate Glasses. Journal of Physical Chemistry Solids 2007, 68(4), 581–585. DOI: 10.1016/j.jpcs.2007.01.032.
  • Eraiah, B. Optical Properties of Samarium Doped Zinc–Tellurite Glasses. Bulletin of Materials Science 2006, 29(4), 375–378. DOI: 10.1007/BF02704138.
  • Hatem, A. E.-B.; S El-Mandouh, Z.; Hmadia, A. Z.; Samir, Y. M.; Giham, M. E.-K.; Hosny, A. Optical and Infrared Properties of Lithium Diborate Glasses Doped with Copper Oxide: Effect of Gamma Irradiation. Indian Journal of Pure and Applied Physics 2012, 50, 398–404.
  • Satyanaryana, T.; Srinivasa Rao, K.; Srinivas, G.; Prasanthi, V.; Prabhkar, S. V.; Srilatha, K.; Naga Lakshmi, N. T. V.; Nagarjuna, G. Structural Features of Copper Doped Heavy Metal Oxide Based Glasses. International Journal of Current Engineering and Technology 2014, 2, 317–319. DOI: 10.14741/Ijcet/Spl.2.2014.58.
  • Chandra Sekhar, K.; Hameed, A.; Sathe, V. G.; Chary, M. N.; Shareefuddin, M. D. Physical, Optical and Structural Studies of Copper-Doped Lead Oxychloro Borate Glasses. Bulletin of Materials Science 2018, 41(3), 79–82. DOI: 10.1007/s12034-018-1604-4.
  • Samir, A.; A. Hassan, M.; Abokhadra, A.; Soliman, L. I.; Elokr, M. Characterization of Borate Glasses Doped with Copper Oxide for Optical Application. Optical and Quantum Electronics 2019, 51(4), 123–127. DOI: 10.1007/s11082-019-1819-7.
  • Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Yordanov, S.; Ganev, V. Structure and Properties of a Non-traditional Glass Containing TeO2, SeO2 and MoO3. Optical Materials 2014, 34(11), 1781–1787. DOI: 10.1016/j.optmat.2012.05.002.
  • Bachvarova-Nedelcheva, A.; Iordanova, R.; Yordanov, S.; Dimitriev, Y. Optical Properties of Selenite Glasses. Journal of Non-Crystalline Solids 2009, 355(37–42), 2027–2030. DOI: 10.1016/j.jnoncrysol.2008.06.125.
  • Dimitriev, Y.; Ivanova, I.; Dimitrov, V.; Lackov, L. Glass Formation Range in the SeO2-TeO2-V2O5-MoO3 System. Journal of Materials Science 1986, 21(1), 142–146. DOI: 10.1007/BF01144712.
  • Dimitriev, Y. B.; Yordanov, S. I.; Lakov, L. I. Formation and Structure of Glasses Containing SeO2. Journal of Non-Crystalline Solids 1995, 192–193, 179–182. DOI: 10.1016/0022-3093(95)00348-7.
  • Dimitriev, Y.; Ivanova, Y.; Dimitrov, V.; Lakov, L.; Yordanov, S. Colored Glasses in Selenite Systems. Journal of Materials Science Letters 1990, 9(7), 793–795. DOI: 10.1007/BF00720161.
  • Bachvarova-Nedelcheva, A.; Iordanova, R.; Dimitriev, Y. Synthesis of Selenite Glasses in Air. Journal of Chemical Technology and Metallurgy 2005, 40(4), 315–318.
  • Ram, R.; Bhattacharya, S. Mixed Ionic-Electronic Transport in Na2O Doped Glassy Electrolytes: Promising Candidate for New Generation Sodium Ion Battery Electrolytes. Journal of Applied Physics 2023, 133(14), 145101–145106. DOI: 10.1063/5.0145894.
  • Halder, P.; Bhattacharya, S. Debye to Non-debye Type Relaxation in MoO3 Doped Glassy Semiconductors: A Portrait on Microstructure and Electrical Transport Properties. Physica B: Condensed Matter 2023, 648, 414374. DOI: 10.1016/j.physb.2022.414374.
  • Sengupta, A.; Chamuah, A.; Ram, R.; Ghosh, C. K.; Diyali, S.; Biswas, B.; Ali, M. S.; Bhattacharya, S. Formation of Li10Zn4O9, Li2MoO3, and ZnSeO3 Nanophases: Roles in Electrical Conductivity and Electrochemical Stability in Lithium Ion Conductors and Their Crystalline Counterparts. ECS Journal of Solid State Science and Technology 2022, 11(11), 113008–113014. DOI: 10.1149/2162-8777/aca2dd.
  • Ghosh, J.; Sengupta, A.; Halder, P.; Ojha, S.; Panda, G. K.; Bhattacharya, S. Single Polaron Hopping in Fe Doped Glassy Semiconductors: Structure–Electrical Transport Relationship. Journal of Applied Physics 2022, 132(20), 205108–2051014. DOI: 10.1063/5.0105842.
  • Bar, A. K.; Bhattacharya, K.; Kundu, R.; Roy, D.; Bhattacharya, S. Anomalous Electrical Conductivity in Selenite Glassy Nanocomposites. Materials Chemistry and Physics 2017, 199, 322–328. DOI: 10.1016/j.matchemphys.2017.07.004.
  • Chamuah, A.; Ojha, S.; Bhattacharya, K.; Ghosh, C. K.; Bhattacharya, S. AC Conductivity and Electrical Relaxation of a Promising Ag2S-Ge-Te-Se Chalcogenide Glassy System. Journal of Physical Chemistry Solids 2022, 166, 110695–110701. DOI: 10.1016/j.jpcs.2022.110695.
  • Ojha, S.; Roy, M.; Bhattacharya, S. Description of AC Conductivity via Meyer-Neldel Rule: A Comparative Study between Oxide and Chalcogenide Systems. Journal of Non-Crystalline Solids 2022, 577, 121307–121313. DOI: 10.1016/j.jnoncrysol.2021.121307.
  • Chamuah, A.; Bhattacharya, K.; Sahidul Ali, M.; Ghosh, C. K.; Chattopadhyay, D.; Bhattacharya, S. Density of States, DC Conductivity and Physical Properties of Ag2S-Ge–Te–Se Chalcogenide Glassy System. Applied Physics A 2021, 127(9), 1–10. DOI: 10.1007/s00339-021-04796-z.
  • Ojha, S.; Sahidul Ali, M.; Roy, M.; Bhattacharya, S. Hopping Frequency and Conductivity Relaxation of Promising Chalcogenides: AC Conductivity and Dielectric Relaxation Approaches. Materials Research Express 2021, 8(8), 085203–085209. DOI: 10.1088/2053-1591/ac1d17.
  • Thakur, S.; Kaur, A.; Singh, L. Mixed Valence Effect of Se6+ and Zr4+ on Structural, Thermal, Physical, and Optical Properties of B2O3–Bi2O3–SeO2–ZrO2 Glasses. Optical Materials 2019, 96, 109338–109342. DOI: 10.1016/j.optmat.2019.109338.
  • Singh, L.; Thakur, V.; Punia, R.; Kundu, R. S.; Singh, A. Structural and Optical Properties of Barium Titanate Modified Bismuth Borate Glasses. Solid State Sciences 2014, 37, 64–71. DOI: 10.1016/j.solidstatesciences.2014.08.010.
  • Thakur, V.; Kushwaha, H. S.; Singh, A.; Vaish, R.; Punia, R.; Singh, L. A Study on the Structural and Photocatalytic Degradation of Ciprofloxacine Using (70B2O3–29Bi2O3–1Dy2O3)–x (BaO–TiO2) Glass Ceramics. Journal of Non-Crystalline Solids 2015, 428, 197–203. DOI: 10.1016/j.jnoncrysol.2015.08.009.
  • Kundu, R.; S; Dhankhar, S.; Punia, R.; Nanda, K.; Kishore, N. Bismuth Modified Physical, Structural and Optical Properties of Mid-IR Transparent Zinc Boro-Tellurite Glasses. Journal of Alloys and Compounds 2014, 587, 66–73. DOI: 10.1016/j.jallcom.2013.10.141.
  • Hammad, A. H.; Abdelghany, A. M.; Okasha, A.; Marzouk, S. Y. The Influence of Fluorine and Nickel Ions on the Structural, Spectroscopic, and Optical Properties of (100-x) [15NaF–5CaF2–80B2O3]-xNiO glasses. Journal of Materials Science: Materials in Electronics 2017, 28(12), 8662–8668. DOI: 10.1007/s10854-017-6590-6.
  • Moustafa, F. A.; Abdel-Baki, M.; Fayad, A. M.; El-Diasty, F. Role of Mixed Valence Effect and Orbital Hybridizationon Molar Volume of Heavy Metal Glass for Ionic Conduction Pathways Augmentation. American Journal of Materials Science 2014, 4(3), 119–126. DOI: 10.5923/j.materials.20140403.01.
  • Abdel-Baki, M.; El-Diasty, F. Role of Oxygen on the Optical Properties of Borate Glass Doped with ZnO. Journal of Solid State Chemistry 2011, 184(10), 2762–2769. DOI: 10.1016/j.jssc.2011.08.015.
  • Thakur, S.; Thakur, V.; Kaur, A.; Singh, L. Structural, Optical and Thermal Properties of Nickel Doped Bismuth Borate Glasses. Journal of Non-Crystalline Solids 2019, 512, 60–71. DOI: 10.1016/j.jnoncrysol.2019.02.012.
  • Wers, E.; Oudadesse, H.; Lefeuvre, B.; Lucas-Girot, A.; Rocherullé, J.; Lebullenger, R. Excess Entropy and Thermal Behavior of Cu- and Ti-Doped Bioactive Glasses. Journal of Thermal Analysis and Calorimetry 2014, 117(2), 579–588. DOI: 10.1007/s10973-014-3731-5.
  • Mondal, R.; Biswas, D.; Sundar Das, A.; Nanao Ningthemcha, R. K.; Deb, D.; Bhattacharya, S.; Kabi, S. Influence of Samarium Content on Structural, Thermal, Linear and Non-linear Optical Properties of ZnO–TeO2–P2O5 glasses. Materials Chemistry and Physics 2020, 255, 123561–123564. DOI: 10.1016/j.matchemphys.2020.123561.
  • Reddy, V. K.; Balaji Rao, R.; Mouli, K. C.; Rama Koti Reddy, D. V.; Ramana Reddy, M. V. Studies on Lithium Alumino Phosphate Glasses Doped with Selenium Ions for Hard Electrolytes. Journal of Materials Science 2012, 47(17), 6254–6262. DOI: 10.1007/s10853-012-6545-5.
  • Uma, T.; Nakao, A.; Nogami, M. Characterization and Electrochemical Properties of P2O5–ZrO2–SiO2 Glasses as Proton Conducting Electrolyte. Materials Research Bulletin 2006, 41(4), 817–824. DOI: 10.1016/j.materresbull.2005.10.002.
  • Wang, F.; Liao, Q.; Chen, K.; Pan, S.; Lu, M. The Crystallization and FTIR Spectra of ZrO2-Doped 36Fe2O3–10B2O3–54P2O5 Glasses and Crystalline Compounds. Journal of Alloys and Compounds 2014, 611, 278–283. DOI: 10.1016/j.jallcom.2014.05.117.
  • Rayan, D. A.; Elbashar, Y. H.; El Basaty, A. B.; Rashad, M. M. Infrared Spectroscopy of Cupric Oxide Doped Barium Phosphate Glass. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6(3), 1026–1030.
  • Lucacel, R. C.; Marcus, I. C.; Ardelean, I.; Hulpus, O. Structural Studies of Copper Doped 2TeO2–PbO–Ag2O Glass by FT-IR and Raman Spectroscopies. The European Physical Journal Applied Physics 2010, 51(3), 30901–30904. DOI: 10.1051/epjap/2010120.
  • Lenz, G. F.; Bini, R. A.; Bueno, T. P.; de Oliveira, R. J.; Felix, J. F.; Schneider, R. Self-Supported Copper (Cu) and Cu-Based Nanoparticle Growth by Bottom-Up Process onto Borophosphate Glasses. Journal of Materials Science 2017, 52(11), 6635–6646. DOI: 10.1007/s10853-017-0899-7.
  • Mohan, S.; Kaur, S.; Singh, D. P.; Kaur, P. Structural and Luminescence Properties of Samarium Doped Lead Aluminum Borate Glasses. Optical Materials 2017, 73, 223–233. DOI: 10.1016/j.optmat.2017.08.015.
  • Deepa, A. V.; Priya, M.; Suresh, S. Influence of Samarium Oxide Ions on Structural and Optical Properties of Borate Glasses. Scientific Research and Essays 2016, 11(5), 57–63. DOI: 10.5897/SRE2015.6359.
  • Usharani, V. L.; Eraiah, B. Structural and Optical Properties of Samarium Doped Lithium Lead Borate Glasses. Materials Research Express 2019, 6(5), 055204–055208. DOI: 10.1088/2053-1591/ab0768.
  • Davis, E. A.; Mott, N. F. Conduction in Non-crystalline Systems V. Conductivity, Optical Absorption and Photoconductivity in Amorphous Semiconductors. Philosophical Magazine 2006, 22(179), 0903–0922. DOI: 10.1080/14786437008221061.
  • Farouk, M.; Samir, A.; Metawe, F.; Elokr, M. Optical Absorption and Structural Studies of Bismuth Borate Glasses Containing Er3+ Ions. Journal of Non-Crystalline Solids 2013, 371–372, 14–21. DOI: 10.1016/j.jnoncrysol.2013.04.001.
  • Narwal, P.; Dahiya, M. S.; Yadav, A.; Hooda, A.; Agarwal, A.; Khasa, S. Improved White Light Emission in Dy3+ doped LiF–CaO–Bi2O3–B2O3 Glasses. Journal of Non-Crystalline Solids 2018, 498, 470–479. DOI: 10.1016/j.jnoncrysol.2018.01.042.
  • Dimitrov, V.; Sakka, S. Linear and Nonlinear Optical Properties of Simple Oxide. Journal of Applied Physics 1996, 79(3), 1741–1745. DOI: 10.1063/1.360963.
  • Kumari, G. K.; Muntaz, S.; Rama, C.; Sathish, D. V.; Murthy, P. N.; Rao, P.; S; Ravikumar, R. V. S. S. N. Physical and Optical Properties of Co2+, Ni2+ Doped 20ZnO+xLi2O+(30−x)K2O+ 50B2O3 (5 ≤ x ≤ 25) Glasses: Observation of Mixed Alkali Effect. Materials Research Bulletin 2012, 47(9), 2646–2654. DOI: 10.1016/j.materresbull.2012.04.075.
  • Akshay, V. R.; Arun, B.; Mandal, G.; Vasundhara, M. Visible Range Optical Absorption, Urbach Energy Estimation and Paramagnetic Response in Cr-Doped TiO2 Nanocrystals Derived by a Sol-Gel Method. Physical Chemistry Chemical Physics 2019, 21(24), 12991–13004. DOI: 10.1039/c9cp01351b.
  • Duffy, J. A. Chemical Bonding in the Oxides of the Elements: A New Appraisal. Journal of Solid State Chemistry 1986, 62(2), 145–157. DOI: 10.1016/0022-4596(86)90225-2.
  • Kaur, P.; Singh, K. J.; Thakur, S.; Singh, P.; Bajwa, B. S. Investigation of Bismuth Borate Glass System Modified with Barium for Structural and Gamma-Ray Shielding Properties. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2019, 206, 367–377. DOI: 10.1016/j.saa.2018.08.038.
  • Dimitrov, V.; Komatsu, T. Correlation among Electronegativity, Cation Polarizability, Optical Basicity and Single Bond Strength of Simple Oxides. Journal of Solid State Chemistry 2012, 196, 574–578. DOI: 10.1016/j.jssc.2012.07.030.
  • Zhao, X.; Wang, X.; Lin, H.; Wang, Z. A New Approach to Estimate Refractive Index, Electronic Polarizability, and Optical Basicity of Binary Oxide Glasses. Physica B: Condensed Matter 2008, 403(13–16), 2450–2460. DOI: 10.1016/j.physb.2008.01.009.
  • Iwadate, Y.; Shirao, K.; Fukushima, K. Electronic Polarizability of a Sm3+ Ion Estimated from Refractive Indexes and Molar Volumes of Molten SmCl3. Journal of Alloys and Compounds 1999, 284(1–2), 89–91. DOI: 10.1016/S0925-8388(98)00715-4.
  • Herzfeld, K. F. On Atomic Properties Which Make an Element a Metal. Physical Review 1927, 29(5), 701–705. DOI: 10.1103/PhysRev.29.701.
  • Dimitrov, V.; Komatsu, T. Electronic Polarizability, Optical Basicity and Non-linear Optical Properties of Oxide Glasses. Journal of Non-Crystalline Solids 1999, 249(2–3), 160–179. DOI: 10.1016/S0022-3093(99)00317-8.
  • Dimitrov, V.; Sakka, S. Electronic Oxide Polarizability and Optical Basicity of Simple Oxides. Journal of Applied Physics 1996, 79(3), 1736–1740. DOI: 10.1063/1.360962.
  • Dimitrov, V.; Komatsu, T. An Interpretation of Optical Properties of Oxides and Oxide Glasses in Terms of the Electronic Ion Polarizability and Average Single Bond Strength. Journal of Chemical Technology and Metallurgy 2010, 45 (3), 219–250.
  • H, S. F. Study of Some Physical and Optical Properties of Bi2O3-TeO2-V2O5 Glasses. Australian Journal of Basic and Applied Sciences 2017, 11(9), 171–178.
  • Duffy, J. A. Ultraviolet Transparency of Glass: A Chemical Approach in Terms of Band Theory, Polarisability and Electronegativity. Physics and Chemistry of Glasses 2001, 42(3), 151–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.