395
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Textile structures in concrete reinforcement

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aaraujo, M., Fangueiro, R., Pereira, C., & Jalali, S. (2011). Reinforced composite material with axial reinforcement and method for producing same. International Patent 103581, University of Minho, Portugal.
  • Abdkader, A., Penzel, P., Friese, D., Overberg, M., Hahn, L., Butler, M., … Cherif, C. (2023). Improved tensile and bond properties through novel rod constructions based on the braiding technique for non-metallic concrete reinforcements. Materials, 16(6), 2459. https://doi.org/10.3390/ma16062459
  • Adosi, B., Mirjalili, S. A., Adresi, M., Tulliani, J.-M., & Antonaci, P. (2021). Experimental evaluation of tensile performance of aluminate cement composite reinforced with weft knitted fabrics as a function of curing temperature. Polymers, 13(24), 4385. https://doi.org/10.3390/polym13244385
  • Agcayazi, T., Chatterjee, K., Bozkurt, A., & Ghosh, T. K. (2018). Flexible interconnects for electronic textiles. Advanced Materials Technologies, 3(10), 1700277. https://doi.org/10.1002/admt.201700277
  • Alagirusamy, R., & Das, A. (2015). Conversion of fibre to yarn. In Textiles and fashion (pp. 159–189). Elsevier.
  • Alagirusamy, R., & Ogale, V. (2004). Commingled and air jet-textured hybrid yarns for thermoplastic composites. Journal of Industrial Textiles, 33(4), 223–243. https://doi.org/10.1177/1528083704044360
  • Alagirusamy, R., & Ogale, V. (2005). Development and characterization of GF/PET, GF/nylon, and GF/PP commingled yarns for thermoplastic composites. Journal of Thermoplastic Composite Materials, 18(3), 269–285. https://doi.org/10.1177/0892705705049557
  • Alagirusamy, R., & Padaki, N. V. (2015). Introduction to braiding. In S. Rana & R. Fangueiro (Eds.), Braided structures and composites: Production, properties, mechanics, and technical applications (1st ed., pp. 3–17). Boca Raton: CRC Press.
  • Alagirusamy, R., Fangueiro, R., Ogale, V., & Padaki, N. (2006). Hybrid yarns and textile preforming for thermoplastic composites. Textile Progress, 38(4), 1–71. https://doi.org/10.1533/tepr.2006.0004
  • Aldea, C., Gries, T., & Roye, A. (2006). Definition. In W. Brameshuber (Ed.), Textile reinforced concrete - State-of-the-art report of RILEM TC 201-TRC (pp. 5–9). Bagneux: RILEM Publications SARL.
  • Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814–825. https://doi.org/10.1016/j.conbuildmat.2011.12.068
  • Al-Monsur, M. A., Bardl, G., & Cherif, C. (2015). Evaluation of adhesive binders for the development of yarn bonding for new stitch-free non-crimp fabrics. Textile Research Journal, 85(15), 1635–1648. https://doi.org/10.1177/0040517514566111
  • Amzaleg, E., Peled, A., Janetzko, S., & Gries, T. (2012). Bending behavior of 3D fabric reinforced cementitious composites. In J. A.O. Barros (Ed.), PRO 88: 8th RILEM Symposium on Fiber-Reinforced Concretes (FRC) BEFIB 2012 (pp. 136–148). Guimarães, Portugal: RILEM Publications SARL.
  • Antonopoulou, S., McNally, C., & Byrne, G. (2016). Developing braided FRP reinforcement for concrete structures [Paper presentation]. Civil Engineering Research in Ireland Conference (CERI 2016), Galway, Ireland (pp. 7–12). http://hdl.handle.net/10197/8038.
  • Antonopoulou, S., McNally, C., & Byrne, G. (2018). Mechanical characterisation of braided BFRP rebars for internal concrete reinforcement [Paper presentation]. Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018) (pp. 1917–1922). http://hdl.handle.net/10197/9589.
  • Armakan, D. M., & Roye, A. (2009). A study on the compression behaviour of spacer fabrics designed for concrete applications. Fibers and Polymers, 10(1), 116–123. https://doi.org/10.1007/s12221-009-0116-7
  • Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fibre-reinforced concrete using industrial hemp fibres. Construction and Building Materials, 35, 710–717. https://doi.org/10.1016/j.conbuildmat.2012.04.119
  • Ayranci, C., & Carey, J. (2008). 2D braided composites: A review for stiffness critical applications. Composite Structures, 85(1), 43–58. https://doi.org/10.1016/j.compstruct.2007.10.004
  • Ayres, P., Leal da Silva, W. R., Nicholas, P., Andersen, T. J., & Greisen, J. P. R. (2019). SCRIM – Sparse concrete reinforcement in meshworks. In J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (Eds.), Robotic fabrication in architecture, art and design 2018 (pp. 207–220). Cham: Springer Cham.
  • Bahij, S., Omary, S., Steiner, V., Feugeas, F., & Faqiri, A. (2021). Experimental study on concrete specimens strengthened with non-woven plastic sheets. International Journal of Civil Infrastructure, 4, 128–137. https://doi.org/10.11159/ijci.2021.016
  • Banholzer, B. (2006). Bond of a strand in a cementitious matrix. Materials and Structures, 39(10), 1015–1028. https://doi.org/10.1617/s11527-006-9115-y
  • Bank, L. C. (2006). Composites for construction: Structural design with FRP materials. Hoboken, NJ: John Wiley & Sons, Inc.
  • Bar, M., Alagirusamy, R., & Das, A. (2018). Properties of flax-polypropylene composites made through hybrid yarn and film stacking methods. Composite Structures, 197, 63–71. https://doi.org/10.1016/j.compstruct.2018.04.078
  • Barhum, R., & Mechtcherine, V. (2012). Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading. Engineering Fracture Mechanics, 92, 56–71. https://doi.org/10.1016/j.engfracmech.2012.06.001
  • Barman, N. K., Alagirusamy, R., & Bhattacharya, S. S. (2022). Flexible towpregs and thermoplastic composites for civil engineering applications. In R. A. First (Ed.), Flexible towpregs and their thermoplastic composites (pp. 357–396). Boca Raton: CRC Press.
  • Barman, N. K., Bhattacharya, S. S., & Alagirusamy, R. (2021). Development of hybrid yarn based woven textile structures for textile reinforced concrete applications. In G. Thilagavathi, S. Periyasamy, J. Krishnasamy, & S. B. Chaudhari (Eds.), Industrial textiles products (pp. 186–214). Cambridge: Woodhead Publishing India Pvt. Ltd.
  • Baruah, P., & Talukdar, S. (2007). A comparative study of compressive, flexural, tensile and shear strength of concrete with fibres of different origins. Indian Concrete Journal, 81(7), 17–24.
  • Bechtold, G., Wiedmer, S., & Friedrich, K. (2002). Pultrusion of thermoplastic composites - New developments and modelling studies. Journal of Thermoplastic Composite Materials, 15(5), 443–465. https://doi.org/10.1177/0892705702015005202
  • Behera, B. K., & Mishra, R. (2008). 3-Dimensional weaving. Indian Journal of Fibre and Textile Research, 33(3), 274–287.
  • Bentur, A., & Mindess, S. (2006). Fibre reinforced cementitious composites. CRC Press.
  • Bentur, A., Peled, A., & Yankelevsky, D. (1997). Enhanced bonding of low modulus polymer fibres-cement matrix by means of crimped geometry. Cement and Concrete Research, 27(7), 1099–1111. https://doi.org/10.1016/S0008-8846(97)00088-4
  • Bernet, N., Michaud, V., Bourban, P.-E., & Månson, J.-A. (2001). Commingled yarn composites for rapid processing of complex shapes. Composites Part A: Applied Science and Manufacturing, 32(11), 1613–1626. https://doi.org/10.1016/S1359-835X(00)00180-9
  • Bernhardsson, J., & Shishoo, R. (2000). Effect of processing parameters on consolidation quality of GF/PP commingled yarn based composites. Journal of Thermoplastic Composite Materials, 13(4), 292–313. https://doi.org/10.1177/089270570001300403
  • Bettermann, I., Löcken, H., Greb, C., Gries, T., Oses, A., Pauw, J., Maghaldadze, N., & Datashvili, L. (2022). Review and evaluation of warp-knitted patterns for metal-based large deployable reflector surfaces. CEAS Space Journal, 15, 477–493. https://doi.org/10.1007/s12567-022-00453-0
  • Bilisik, K. (2013). Three-dimensional braiding for composites: A review. Textile Research Journal, 83(13), 1414–1436. https://doi.org/10.1177/0040517512450766
  • Bogdanovich, A. E. (2016). An overview of three-dimensional braiding technologies. In Y. Kyosev (Ed.), Advances in braiding technology (pp. 3–78). Elsevier.
  • Bompadre, F., & Donnini, J. (2021). Surface modification of glass textile for the reinforcement of a cement-based composite: A review. Applied Sciences, 11(5), 2028. https://doi.org/10.3390/app11052028
  • Boris, D., Xavier, L., & Damien, S. (2018). The tensile behaviour of biaxial and triaxial braided fabrics. Journal of Industrial Textiles, 47(8), 2184–2204. https://doi.org/10.1177/1528083716654469
  • Botelho Goliath, K., Cardoso, D. C. T., & de A. Silva, F. (2021). Flexural behaviour of carbon-textile-reinforced concrete I-section beams. Composite Structures, 260(December), 113540. https://doi.org/10.1016/j.compstruct.2021.113540
  • Brameshuber, W. (2016). Manufacturing methods for textile-reinforced concrete. In Textile fibre composites in civil engineering (pp. 45–59). Amsterdam: Elsevier.
  • Brameshuber, W., Koster, M., Hegger, J., Voss, S., Gries, T., Barle, M., …, Kruger, M. (2004). Textile reinforced concrete (TRC) for integrated formworks [Paper presentation]. SP-224: Thin Reinforced Cement-Based Products and Construction Systems (pp. 45–54). https://doi.org/10.14359/13407
  • Brameshuber, W., Brockmann, T., Mobasher, B., Pachow, U., Peled, A., Reinhardt, H. W., & Wastiels, J. (2006). Production technologies. In W. Brameshuber (Ed.), Textile reinforced concrete - State-of-the-art report of RILEM TC 201-TRC (pp. 57–81). Bagneux: RILEM Publications SARL.
  • Branscomb, D., Beale, D., & Broughton, R. (2013). New directions in braiding. Journal of Engineered Fibers and Fabrics, 8(2), 155892501300800. https://doi.org/10.1177/155892501300800202
  • C0050600. (2016). ACI PRC-506-16 guide to shotcrete. Farmington Hills, MI: American Concrete Institute,
  • Carey, J. P., & Ayranci, C. (2011). Processing and performance of braided composites. In Wiley encyclopedia of composites (pp. 1–10). Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118097298.weoc201
  • Cascardi, A., Dell’Anna, R., & Micelli, F. (2018). Reversible FRP-confinement of heritage masonry columns [Paper presentation]. 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2018, July (pp. 35–43).
  • Cascardi, A., Dell’Anna, R., Micelli, F., Lionetto, F., Aiello, M. A., & Maffezzoli, A. (2019). Reversible techniques for FRP-confinement of masonry columns. Construction and Building Materials, 225, 415–428. https://doi.org/10.1016/j.conbuildmat.2019.07.124
  • Chen, X., Taylor, L. W., & Tsai, L.-J. (2016). Three-dimensional fabric structures. Part 1 – An overview on fabrication of three-dimensional woven textile preforms for composites. In Handbook of technical textiles (2nd ed., pp. 285–304). Amsterdam: Elsevier.
  • Choi, B.-D., Diestel, O., & Offermann, P. (1999). Commingled CF/PEEK hybrid yarns for use in textile reinforced high performance rotors [Paper presentation]. 12th International Conference on Composite Materials (ICCM) (pp. 796–806). http://www.iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap528.pdf.
  • Chudoba, R., van der Woerd, J., Schmerl, M., & Hegger, J. (2014). ORICRETE: Modeling support for design and manufacturing of folded concrete structures. Advances in Engineering Software, 72, 119–127. https://doi.org/10.1016/j.advengsoft.2013.05.004
  • Claramunt, J., Fernández-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fibre nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230–239. https://doi.org/10.1016/j.conbuildmat.2016.04.044
  • Claramunt, J., Ventura, H., & Ardanuy, M. (2018). Rheology of CAC-based cement pastes and the relationship to penetrability through nonwoven fabric reinforcements. Cement and Concrete Composites, 94, 85–93. https://doi.org/10.1016/j.cemconcomp.2018.08.014
  • Claramunt, J., Ventura, H., Fernández-Carrasco, L., & Ardanuy, M. (2017). Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials, 10(2), 215. https://doi.org/10.3390/ma10020215
  • Cohen, Z., & Peled, A. (2010). Controlled telescopic reinforcement system of fabric–cement composites—Durability concerns. Cement and Concrete Research, 40(10), 1495–1506. https://doi.org/10.1016/j.cemconres.2010.06.003
  • Cohen, Z., & Peled, A. (2012). Effect of nanofillers and production methods to control the interfacial characteristics of glass bundles in textile fabric cement-based composites. Composites Part A: Applied Science and Manufacturing, 43(6), 962–972. https://doi.org/10.1016/j.compositesa.2012.01.022
  • Cohen, Z., Peled, A., Yonatan, P., Roye, A., & Gries, T. (2006). Effects of warp knitted fabrics made from multifilament in cement-based composites. In J. Hegger, W. Brameshuber, & N. Will (Ed.), ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete (pp. 23–32). Aachen, Germany: RILEM Publications SARL. https://doi.org/10.1617/2351580087.003
  • Colombo, I. G., Magri, A., Zani, G., Colombo, M., & Di Prisco, M. (2013a). Erratum to: Textile reinforced concrete: Experimental investigation on design parameters. Materials and Structures, 46(11), 1953–1971. https://doi.org/10.1617/s11527-013-0023-7
  • Colombo, I. G., Magri, A., Zani, G., Colombo, M., & Di Prisco, M. (2013b). Textile reinforced concrete: Experimental investigation on design parameters. Materials and Structures, 46(11), 1933–1951. https://doi.org/10.1617/s11527-013-0017-5
  • “Concrete Canvas.” 2021. https://www.concretecanvas.com/.
  • Contamine, R., Junes, A., & Si Larbi, A. (2014). Tensile and in-plane shear behaviour of textile reinforced concrete: Analysis of a new multiscale reinforcement. Construction and Building Materials, 51, 405–413. https://doi.org/10.1016/j.conbuildmat.2013.10.084
  • Contamine, R., Si Larbi, A., & Hamelin, P. (2011). Contribution to direct tensile testing of textile reinforced concrete (TRC) composites. Materials Science and Engineering: A, 528(29–30), 8589–8598. https://doi.org/10.1016/j.msea.2011.08.009
  • Correia, L., Cunha, F., Subramani, P., & Fangueiro, R. (2016). Development of hybrid braided composite rods with high ductility for civil engineering. In J. F. Silva Gomes & S. A. Meguid (Eds.), Proceedings of the 5th International Conference on Integrity-Reliability-Failure, Portugal (pp. 305–306). https://paginas.fe.up.pt/∼irf/Proceedings_IRF2016/data/papers/6365.pdf
  • Cunha, F., Oliveira, D., Vasconcelos, G., & Fangueiro, R. (2015). Applications of braided structures in civil engineering. In S. Rana & R. Fangueiro (Eds.), Braided structures and composites: Production, properties, mechanics, and technical applications, first (pp. 195–230). Boca Raton: CRC Press.
  • Cuypers, H., Orlowsky, J., Raupach, M., & Büttner, T. (2007). Durability aspects of AR-glass-reinforcement in textile reinforced concrete, Part 1: Material behaviour. In Advances in construction materials 2007 (pp. 381–388). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Cuypers, H., Orlowsky, J., Raupach, M., Büttner, T., & Wastiels, J. (2007). Durability aspects of AR-glass-reinforcement in textile reinforced concrete, Part 2: Modelling and exposure to outdoor weathering. In Advances in construction materials 2007 (pp. 389–395). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Deng, M., Dong, Z., & Zhang, C. (2020). Experimental investigation on tensile behaviour of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibres. Construction and Building Materials, 235, 117801. https://doi.org/10.1016/j.conbuildmat.2019.117801
  • Ding, Y., Wang, Q., Pacheco-Torgal, F., & Zhang, Y. (2020). Hybrid effect of basalt fibre textile and macro polypropylene fibre on flexural load-bearing capacity and toughness of two-way concrete slabs. Construction and Building Materials, 261, 119881. https://doi.org/10.1016/j.conbuildmat.2020.119881
  • Dittel, G., Wangler, M., Maiworm, B., & Gries, T. (2021). Experimental investigation of mechanical properties of smart textile reinforced concrete pipes. In P. Serna, A. Llano-Torre, J. R. Martí-Vargas, & J. Navarro-Gregori (Eds.), Fibre reinforced concrete: Improvements and innovations. BEFIB 2020. RILEM bookseries (Vol. 30, pp. 991–1000). Cham: Springer International Publishing.
  • Doersam, A., Tsigkou, O., & Jones, C. (2022). A review: Textile technologies for single and multi-layer tubular soft tissue engineering. Advanced Materials Technologies, 7(11), 2101720. https://doi.org/10.1002/admt.202101720
  • Dolatabadi, M. K., Janetzko, S., & Gries, T. (2011). Deformation of AR glass roving embedded in the warp knitted structure. Journal of the Textile Institute, 102(4), 308–314. https://doi.org/10.1080/00405001003722401
  • Dolatabadi, M. K., Janetzko, S., & Gries, T. (2014). Geometrical and mechanical properties of a non-crimp fabric applicable for textile reinforced concrete. Journal of the Textile Institute, 105(7), 711–716. https://doi.org/10.1080/00405000.2013.844908
  • Dolatabadi, M. K., Janetzko, S., Gries, T., Kang, B.-G., & Sander, A. (2011). Permeability of AR-glass fibres roving embedded in cementitious matrix. Materials and Structures, 44(1), 245–251. https://doi.org/10.1617/s11527-010-9623-7
  • Du, G.-W., & Ko, F. (1996). Analysis of multiaxial warp-knit preforms for composite reinforcement. Composites Science and Technology, 56(3), 253–260. https://doi.org/10.1016/0266-3538(95)00108-5
  • Du, Y. X., Shao, X., Chu, S. H., Zhou, F., & Su, R. K. L. (2021). Strengthening of preloaded RC beams using prestressed carbon textile reinforced mortar plates. Structures, 30(February), 735–744. https://doi.org/10.1016/j.istruc.2021.01.024
  • Duhovic, M., & Bhattacharyya, D. (2011). Knitted fabric composites. In K. F. Au (Ed.), Advances in knitting technology (pp. 193–212). Amsterdam: Elsevier.
  • Dvorkin, D., & Peled, A. (2016). Effect of reinforcement with carbon fabrics impregnated with nanoparticles on the tensile behaviour of cement-based composites. Cement and Concrete Research, 85, 28–38. https://doi.org/10.1016/j.cemconres.2016.03.008
  • El Kadi, M., Kapsalis, P., Van Hemelrijck, D., Wastiels, J., & Tysmans, T. (2020). Influence of loading orientation and knitted versus woven transversal connections in 3D textile reinforced cement (TRC) composites. Applied Sciences, 10(13), 4517. https://doi.org/10.3390/app10134517
  • El Kadi, M., Tysmans, T., Verbruggen, S., Vervloet, J., De Munck, M., Wastiels, J., & Van Hemelrijck, D. (2019). Experimental study and benchmarking of 3D textile reinforced cement composites. Cement and Concrete Composites, 104(June 2018), 103352. https://doi.org/10.1016/j.cemconcomp.2019.103352
  • El Messiry, M., & Fadel, N. (2021). Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. Journal of Natural Fibers, 18(8), 1181–1193. https://doi.org/10.1080/15440478.2019.1688748
  • El-Messiry, M., El-Tarfawy, S., & El Deeb, R. (2017a). Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric. Alexandria Engineering Journal, 56(3), 297–307. https://doi.org/10.1016/j.aej.2017.03.032
  • El Messiry, M., El-Tarfawy, S., & El Deeb, R. (2017b). Study pultruded jute fabric effect on the cementitious thin composites mechanical properties with low fibre volume fraction. Alexandria Engineering Journal, 56(4), 415–421. https://doi.org/10.1016/j.aej.2017.05.026
  • El Messiry, M., Mito, A.-B., Al-Oufy, A., & El-Tahan, E. (2014). Effect of fabric material and tightness on the mechanical properties of fabric–cement composites. Alexandria Engineering Journal, 53(4), 795–801. https://doi.org/10.1016/j.aej.2014.09.002
  • Fernández Carrasco, L., Claramunt Blanes, J., Llerena Encalada, A., Torrens Martín, D., Ardanuy Raso, M., & Zamora I Mestre, J.-L. (2015). Nonwoven flax fibre mats and white Portland cement composites for building envelopes. Academic Journal of Civil Engineering, 33(2), 46–51. https://doi.org/10.26168/icbbm2015.6
  • Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1007/s11367-007-0327-3
  • Franzke, G., Hausding, J., & Cherif, C. (2007). Improved warp knitting machine for symmetric multi-plies [Paper presentation]. 16th International Conferences on Composite Materials, Kyoto, Japan, 8–13 July (pp. 1–5). https://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/FriB/FrBA2-04ge_franzkeg221527p.pdf
  • Friedrich, K., Glienke, N., Flöck, J., Haupert, F., & Paipetis, S. A. (2002). Reinforcement of damaged concrete columns by filament winding of thermoplastic composites. Polymers and Polymer Composites, 10(4), 273–280. https://doi.org/10.1177/096739110201000402
  • Friese, D., Scheurer, M., Hahn, L., Gries, T., & Cherif, C. (2022). Textile reinforcement structures for concrete construction applications—A review. Journal of Composite Materials, 56(26), 4041–4064. https://doi.org/10.1177/00219983221127181
  • Fu, Q., Niu, D., Zhang, J., Huang, D., & Hong, M. (2018). Impact response of concrete reinforced with hybrid basalt-polypropylene fibres. Powder Technology, 326, 411–424. https://doi.org/10.1016/j.powtec.2017.12.022
  • Fukuta, K., Onooka, R., Aoki, E., & Tsumuraya, S. (1982). Three-dimensionally latticed flexible-structure composite. U.S. Patent, 4,336,296.
  • Galan, I., Baldermann, A., Kusterle, W., Dietzel, M., & Mittermayr, F. (2019). Durability of shotcrete for underground support–Review and update. Construction and Building Materials, 202, 465–493. https://doi.org/10.1016/j.conbuildmat.2018.12.151
  • Gandhi, K. L. (2020). The fundamentals of weaving technology. In K. L. Gandhi (Ed.), Woven textiles principles, technologies and applications (2nd ed., pp. 167–270). Amsterdam: Elsevier,
  • Gandhi, K. L., & Sondhelm, W. S. (2016). Technical fabric structures – 1. Woven fabrics. In R. A. Horrocks & S. C. Anand (Eds.), Handbook of technical textiles (2nd ed., pp. 63–106). Cambridge: Woodhead Publishing.
  • Gao, S. L., Mäder, E., & Plonka, R. (2004). Coatings for glass fibres in a cementitious matrix. Acta Materialia, 52(16), 4745–4755. https://doi.org/10.1016/j.actamat.2004.06.028
  • Gao, S. L., Mäder, E., Abdkader, A., & Offermann, P. (2003). Sizings on alkali-resistant glass fibres: Environmental effects on mechanical properties. Langmuir, 19(6), 2496–2506. https://doi.org/10.1021/la020778t
  • Gencoglu, M. (2009). Effect of fabric types on the impact behaviour of cement based composites in flexure. Materials and Structures, 42(1), 135–147. https://doi.org/10.1617/s11527-008-9373-y
  • Ghaedsharaf, M., Brunel, J. E., & Laberge Lebel, L. (2018). Thermoplastic composite rod manufacturing using biaxial braid-trusion [Paper presentation]. ECCM 2018 - 18th European Conference on Composite Materials (pp. 1–8).
  • Ghaedsharaf, M., Brunel, J. E., & Laberge Lebel, L. (2021). Multiscale numerical simulation of the forming process of biaxial braids during thermoplastic braid-trusion: Predicting 3D and internal geometry and fibre orientation distribution. Composites Part A: Applied Science and Manufacturing, 150(September), 106637. https://doi.org/10.1016/j.compositesa.2021.106637
  • Ghorbani, V., Asgharian Jeddi, A. A., Dabiryan, H., & Ramezanianpour, A. A. (2020). Investigation of the flexural behavior of self-consolidating mortars reinforced with net warp-knitted spacer fabrics. Construction and Building Materials, 232, 117270. https://doi.org/10.1016/j.conbuildmat.2019.117270
  • Ghosh, M., Banerjee, P. K., & Rao, G. V. (2010). Development of asphalt overlay fabric from jute. Journal of the Textile Institute, 101(5), 431–442. https://doi.org/10.1080/00405000802461310
  • Glavind, M. (2009). Sustainability of cement, concrete and cement replacement materials in construction. In J. M. Khatib (Ed.), Sustainability of construction materials (pp. 120–147). Amsterdam: Elsevier.
  • Glowania, M., Gries, T., Schoene, J., Schleser, M., & Reisgen, U. (2011). Innovative coating technology for textile reinforcements of concrete applications. Key Engineering Materials, 466, 167–173. https://doi.org/10.4028/www.scientific.net/KEM.466.167
  • Gokarneshan, N., & Alagirusamy, R. (2009). Weaving of 3D fabrics: A critical appreciation of the developments. Textile Progress, 41(1), 1–58. https://doi.org/10.1080/00405160902804239
  • Goldfeld, Y., & Perry, G. (2019). AR-glass/carbon-based textile-reinforced concrete elements for detecting water infiltration within cracked zones. Structural Health Monitoring, 18(5–6), 1383–1400. https://doi.org/10.1177/1475921718808223
  • Gonilho Pereira, C., Fangueiro, R., Jalali, S., Araujo, M., & Marques, P. (2008). Braided reinforced composite rods for the internal reinforcement of concrete. Mechanics of Composite Materials, 44(3), 221–230. https://doi.org/10.1007/s11029-008-9015-z
  • Gonzalez-Lopez, L., Claramunt, J., Haurie, L., Ventura, H., & Ardanuy, M. (2021). Study of the fire and thermal behaviour of façade panels made of natural fibre-reinforced cement-based composites. Construction and Building Materials, 302(July), 124195. https://doi.org/10.1016/j.conbuildmat.2021.124195
  • Gonzalez-Lopez, L., Claramunt, J., Hsieh, Y.-L., Ventura, H., & Ardanuy, M. (2020). Surface modification of flax nonwovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Composites Part B: Engineering, 191(February), 107955. https://doi.org/10.1016/j.compositesb.2020.107955
  • Gopinath, S., Gettu, R., & Iyer, N. R. (2018). Influence of pre-stressing the textile on the tensile behaviour of textile reinforced concrete. Materials and Structures, 51(3), 64. https://doi.org/10.1617/s11527-018-1194-z
  • Gopinath, S., Prakash, A., & Ahmed, A. K. F. (2020). Synergy of hybrid textile reinforced concrete under impact loading. Sādhanā, 45(1), 72. https://doi.org/10.1007/s12046-020-1312-9
  • Gopinath, S., Prakash, A., Aahrthy, R., & Harish, M. B. (2018). Investigations on the influence of matrix and textile on the response of textile reinforced concrete slabs under impact loading. Sādhanā, 43(11), 172. https://doi.org/10.1007/s12046-018-0933-8
  • Goud, V., Alagirusamy, R., Das, A., & Kalyanasundaram, D. (2018). Dry electrostatic spray coated towpregs for thermoplastic composites. Fibers and Polymers, 19(2), 364–374. https://doi.org/10.1007/s12221-018-7470-7
  • Goud, V., Alagirusamy, R., Das, A., & Kalyanasundaram, D. (2019). Influence of various forms of polypropylene matrix (fibre, powder and film states) on the flexural strength of carbon-polypropylene composites. Composites Part B: Engineering, 166(May 2018), 56–64. https://doi.org/10.1016/j.compositesb.2018.11.135
  • Goud, V., Ramasamy, A., Das, A., & Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Materials and Manufacturing Processes, 34(14), 1638–1645. https://doi.org/10.1080/10426914.2019.1666991
  • Grace, N. F., Abdel-Sayed, G., & Ragheb, W. F. (2002). Strengthening of concrete beams using innovative ductile fibre-reinforced polymer fabric. ACI Structural Journal, 99(5), 692–700.
  • Grace, N. F., Ragheb, W. F., & Abdel-Sayed, G. (2004). Development and application of innovative triaxially braided ductile FRP fabric for strengthening concrete beams. Composite Structures, 64(3–4), 521–530. https://doi.org/10.1016/j.compstruct.2003.09.051
  • Grace, N. F., Ragheb, W. F., & Abdel-Sayed, G. (2005). Innovative triaxially braided ductileFRP fabric for strengthening structures [Paper presentation]. SP-230: 7th International Symposium on Fibre-Reinforced (FRP) Polymer Reinforcement for Concrete Structures (Vol. SP-230, pp. 119–134). https://doi.org/10.14359/14828
  • Gries, T., Raina, M., Quadflieg, T., & Stolyarov, O. (2016). Manufacturing of textiles for civil engineering applications. In T. Triantafillou (Ed.), Textile fibre composites in civil engineering (pp. 3–24). Amsterdam: Elsevier.
  • Hack, N., Bahar, M., Hühne, C., Lopez, W., Gantner, S., Khader, N., & Rothe, T. (2021). Development of a robot-based multi-directional dynamic fibre winding process for additive manufacturing using shotcrete 3D printing. Fibers, 9(6), 39. https://doi.org/10.3390/fib9060039
  • Hahn, L., Rittner, S., Bauer, C., & Cherif, C. (2018). Development of alternative bondings for the production of stitch-free non-crimp fabrics made of multiple carbon fibre heavy tows for construction industry. Journal of Industrial Textiles, 48(3), 660–681. https://doi.org/10.1177/1528083717736100
  • Haik, R., Adiel Sasi, E., & Peled, A. (2017). Influence of three-dimensional (3D) fabric orientation on flexural properties of cement-based composites. Cement and Concrete Composites, 80, 1–9. https://doi.org/10.1016/j.cemconcomp.2017.02.007
  • Haim, E., & Peled, A. (2011). Impact behaviour of textile and hybrid cement-based composites. ACI Materials Journal, 108(3), 235–243.
  • Halvaei, M., Jamshidi, M., Latifi, M., & Ejtemaei, M. (2020). Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete. Construction and Building Materials, 262, 120877. https://doi.org/10.1016/j.conbuildmat.2020.120877
  • Hampton, F. P., Ko, F. K., & Harris, H. G. (1999). Creep, stress rupture, and behavior of a ductile hybrid fiber reinforced polymer (D-H-FRP) for concrete structures. In T. Massard & A. Vautrin (Ed.), Proceedings of the 1999 International Conference on Composite Materials (ICCM 12), 5–9 July, Paris, France (pp. 1–11). http://www.iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap1364.pdf
  • Han, F., Chen, H., Jiang, K., Zhang, W., Lv, T., & Yang, Y. (2014). Influences of geometric patterns of 3D spacer fabric on tensile behaviour of concrete canvas. Construction and Building Materials, 65, 620–629. https://doi.org/10.1016/j.conbuildmat.2014.05.041
  • Han, F., Chen, H., Li, X., Bao, B., Lv, T., Zhang, W., & Hui Duan, W. (2016). Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement. Journal of Composite Materials, 50(14), 1937–1950. https://doi.org/10.1177/0021998315597743
  • Han, F., Chen, H., Zhang, W., Lv, T., & Yang, Y. (2016). Influence of 3D spacer fabric on drying shrinkage of concrete canvas. Journal of Industrial Textiles, 45(6), 1457–1476. https://doi.org/10.1177/1528083714562087
  • Hanisch, V., Kolkmann, A., Roye, A., & Gries, T. (2006). Influence of machine settings on mechanical performance of yarn and textile structures [Paper presentation]. ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete (pp. 13–22). https://doi.org/10.1617/2351580087.002
  • Harris, H. G., Somboonsong, W., & Ko, F. K. (1998). New ductile hybrid FRP reinforcing bar for concrete structures. Journal of Composites for Construction, 2(1), 28–37. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(28)
  • Harrison, D. M. (2013). The foundation. In D. M. Harrison (Ed.), The grouting handbook (2nd ed., pp. 1–24). Amsterdam: Elsevier.
  • Hasan, M. M. B., Offermann, M., Haupt, M., Nocke, A., & Cherif, C. (2014). Carbon filament yarn-based hybrid yarn for the heating of textile-reinforced concrete. Journal of Industrial Textiles, 44(2), 183–197. https://doi.org/10.1177/1528083713480380
  • Hausding, J., & Cherif, C. (2010). Improvements in the warp-knitting process and new patterning techniques for stitch-bonded textiles. Journal of the Textile Institute, 101(3), 187–196. https://doi.org/10.1080/00405000802370354
  • Hausding, J., Engler, T., Franzke, G., Köckritz, U., & Cherif, C. (2006). Plain stitch-bonded multi-plies for textile reinforced concrete. AUTEX Research Journal, 6(2), 81–90. http://www.autexrj.com/cms/zalaczone_pliki/3-06-2.pdf.
  • Hausding, J., Engler, T., Kleicke, R., & Cherif, C. (2008). High productivity and near-net shape manufacture of textile reinforcements for concrete [Paper presentation]. 15th Congress of the Glassfibre Reinforced Concrete Association International 2008 (pp. 215–224).
  • Hausding, J., Lorenz, E., Ortlepp, R., Lundahl, A., & Cherif, C. (2011). Application of stitch-bonded multi-plies made by using the extended warp knitting process: Reinforcements with symmetrical layer arrangement for concrete. Journal of the Textile Institute, 102(8), 726–738. https://doi.org/10.1080/00405000.2010.515729
  • Hausding, J., Widulle, C., Paul, C., & Cherif, C. (2008). Manufacturing method for symmetric laminates from improved stitch bonded multi-plies [Paper presentation]. 13th European Conference on Composite Materials, European Society for Composite Materials, Stockholm, Sweden. http://www.escm.eu.org/docs/eccm13/1702.pdf
  • Hearle, J. W. S. (2001). High-performance fibres (1st ed.). Cambridge: Woodhead Publishing Limited.
  • Hegger, J., & Voss, S. (2008). Investigations on the bearing behaviour and application potential of textile reinforced concrete. Engineering Structures, 30(7), 2050–2056. https://doi.org/10.1016/j.engstruct.2008.01.006
  • Hegger, J., Curbach, M., Stark, A., Wilhelm, S., & Farwig, K. (2018). Innovative design concepts: Application of textile reinforced concrete to shell structures. Structural Concrete, 19(3), 637–646. https://doi.org/10.1002/suco.201700157
  • Hegger, J., Will, N., Aldea, C., Brameshuber, T., Brockmann, W., Curbach, M., & Jesse, J. (2006). Applications of textile reinforced concrete. In W. Brameshuber (Ed.), Textile reinforced concrete - State-of-the-art report of RILEM TC 201-TRC (pp. 237–270). Bagneux: RILEM Publications SARL.
  • Hegger, J., Will, N., Bruckermann, O., & Voss, S. (2006). Load–bearing behaviour and simulation of textile reinforced concrete. Materials and Structures, 39(8), 765–776. https://doi.org/10.1617/s11527-005-9039-y
  • Hegger, J., Zell, M., & Horstmann, M. (2008). Textile reinforced concrete – Realization in applications. In J. C. Walraven & D. Stoelhorst (Eds.), Tailor made concrete structures (1st ed., pp. 357–362). London: CRC Press.
  • Heins, K., Lesker, S., Pütz, J., Hüntemann, M., & Gries, T. (2023). Effect of thermoplastic impregnation on the mechanical behaviour of textile reinforcement for concrete. SN Applied Sciences, 5(3), 93. https://doi.org/10.1007/s42452-023-05305-y
  • Holschemacher, K. (2020). Application of textile reinforced concrete in precast concrete industry. IOP Conference Series: Materials Science and Engineering, 753(4), 042086. https://doi.org/10.1088/1757-899X/753/4/042086
  • Holschemacher, K. (2022). Challenges in the production of carbon reinforced concrete. In Lecture notes in civil engineering (Vol. 203, pp. 823–831). Singapore: Springer Singapore.
  • Hong, S., & Park, S.-K. (2017). Concrete beams strengthened with prestressed unbonded carbon-fibre-reinforced polymer plates: An experimental study. Polymer Composites, 38(11), 2459–2471. https://doi.org/10.1002/pc.23833
  • Hu, J., & Jiang, Y. (2002). Modeling formability of multiaxial warp knitted fabrics on a hemisphere. Composites Part A: Applied Science and Manufacturing, 33(5), 725–734. https://doi.org/10.1016/S1359-835X(02)00008-8
  • Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., … Nakatani, J. (2020). A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth, 3(5), 564–573. https://doi.org/10.1016/j.oneear.2020.10.010
  • Hussien, O. H., Ibrahim, A. M., & Abd, S. M. (2018). Improving flexural behaviour of textile reinforced concrete one way slab by removing weft yarns with different percentages. Civil Engineering Journal, 4(12), 2903. https://doi.org/10.28991/cej-03091207
  • Immanuel, S., & Baskar, K. (2023). A state-of-the-art review on sustainable low-cost housing and application of textile reinforced concrete. Innovative Infrastructure Solutions, 8(1), 39. https://doi.org/10.1007/s41062-022-01010-8
  • Ishee, C. (2008). Hot weather concreting. In S. Mindess (Ed.), Developments in the formulation and reinforcement of concrete (pp. 114–135). Amsterdam: Elsevier.
  • Islam, M. J., Ahmed, T., Bin Imam, S. M. F., Ifaz, M., & Islam, H. (2022). Flexural and impact behaviour of textile reinforced concrete panel. International Journal of Protective Structures, 14(2), 204141962210952. https://doi.org/10.1177/20414196221095250
  • Islam, M. J., Ahmed, T., Bin Imam, S. M. F., Islam, H., & Shaikh, F. U. A. (2023). Comparative study of carbon fibre and galvanized iron textile reinforced concrete. Construction and Building Materials, 374(March), 130928. https://doi.org/10.1016/j.conbuildmat.2023.130928
  • Ivey, M., Ayranci, C., & Carey, J. P. (2017). Braidtrusion. In J. P. Carey (Ed.), Handbook of advances in braided composite materials (pp. 433–450). Amsterdam: Elsevier
  • Iyer, N. R. (2020). An overview of cementitious construction materials. In P. Samui, N. R. Iyer, D. Kim, & S. Chaudhary (Eds.), New materials in civil engineering (pp. 1–64). Amsterdam: Elsevier.
  • Jamshaid, H., Mishra, R., Militký, J., & Noman, M. T. (2018). Interfacial performance and durability of textile reinforced concrete. Journal of the Textile Institute, 109(7), 879–890. https://doi.org/10.1080/00405000.2017.1381394
  • Janetzko, S., Kravaev, P., Gries, T., Brameshuber, W., Schneider, M., & Hegger, J. (2010). Textile reinforcements with spread and commingled yarn structures [Paper presentation]. International RILEM Conference on Material Science – MATSCI, Aachen 2010 (Vol. I, pp. 37–44).
  • Jia, M., Xiao, X., Lu, X., Feng, G., & Qian, K. (2020). Influence of stacking sequence of basalt-fibre grilles on mechanical properties for textile-reinforced concrete and theoretical prediction. Textile Research Journal, 90(17–18), 1931–1947. https://doi.org/10.1177/0040517520903416
  • Jogur, G., Nawaz Khan, A., Das, A., Mahajan, P., & Alagirusamy, R. (2018). Impact properties of thermoplastic composites. Textile Progress, 50(3), 109–183. https://doi.org/10.1080/00405167.2018.1563369
  • Kaddaha, M. A., Younes, R., & Lafon, P. (2022). New geometrical modelling for 2D fabric and 2.5D interlock composites. Textiles, 2(1), 142–161. https://doi.org/10.3390/textiles2010008
  • Kamani, R., Kamali Dolatabadi, M., & Jeddi, A. A. A. (2018). Flexural design of textile-reinforced concrete (TRC) using warp-knitted fabric with improving fibre performance index (FPI). Journal of the Textile Institute, 109(4), 492–500. https://doi.org/10.1080/00405000.2017.1356000
  • Kamani, R., Kamali Dolatabadi, M., Nasrollahzadeh, K., & Jeddi, A. A. A. (2019). Bending load capacity of carbon fibre reinforced concrete beams as a function of fibre performance index (FPI). Journal of the Textile Institute, 110(4), 581–589. https://doi.org/10.1080/00405000.2018.1498625
  • Kim, D. J., Wille, K., El-Tawil, S., & Naaman, A. E. (2011). Testing of cementitious materials under high-strain-rate tensile loading using elastic strain energy. Journal of Engineering Mechanics, 137(4), 268–275. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000224
  • Kim, S. G., Park, J. K., & Kim, D. J. (2018). Direct tensile responses of aramid fibre reinforced cementitious composites and textile reinforced cementitious composites with 3D spacer fabric at high strain rates. Construction and Building Materials, 168, 232–243. https://doi.org/10.1016/j.conbuildmat.2018.02.136
  • Kling, V., Rana, S., & Fangueiro, R. (2012). Fibre reinforced thermoplastic composite rods. Materials Science Forum, 730–732, 331–336. https://doi.org/10.4028/www.scientific.net/MSF.730-732.331
  • Kloft, H., Empelmann, M., Hack, N., Herrmann, E., & Lowke, D. (2020). Reinforcement strategies for 3D-concrete-printing. Civil Engineering Design, 2(4), 131–139. https://doi.org/10.1002/cend.202000022
  • Knapton, J. J. F. (1966). The dynamics of weft-knitting: A mathematical analysis. Textile Research Journal, 36(8), 706–714. https://doi.org/10.1177/004051756603600804
  • Knapton, J. J. F., & Munden, D. L. (1966). A study of the mechanism of loop formation on weft-knitting machinery: Part II: The effect of yarn friction on yam tensions in knitting and loop formation. Textile Research Journal, 36(12), 1081–1091. https://doi.org/10.1177/004051756603601208
  • Knapton, J. J. F., & Munden, D. L. (1966). A Study of the mechanism of loop formation on weft-knitting machinery: Part I: The effect of input tension and cam setting on loop formation. Textile Research Journal, 36(12), 1072–1080. https://doi.org/10.1177/004051756603601207
  • Ko, F. K., Somboonsong, W., & Harris, H. G. (1997). Fibre architecture based design of ductile composite rebar for concrete structures. In M. L. Scott (Ed.), Proceedings of ICCM-11: International Conference on Composite Materials, 14–18 July, Gold Coast, Australia (pp. 723–730). http://www.iccm-central.org/Proceedings/ICCM11proceedings/papers/ICCM11_V6_76.pdf
  • Koeckritz, U., Cherif, C., Weiland, S., & Curbach, M. (2010). In-situ polymer coating of open grid warp knitted fabrics for textile reinforced concrete application. Journal of Industrial Textiles, 40(2), 157–169. https://doi.org/10.1177/1528083709102938
  • Koutas, L. N., Tetta, Z., Bournas, D. A., & Triantafillou, T. C. (2019). Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review. Journal of Composites for Construction, 23(1), 1–20. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882
  • Kravaev, P., Janetzko, S., Gries, T., Kang, B.-G., Brameshuber, W., Zell, M., & Hegger, J. (2009). Commingling yarns for reinforcement of concrete [Paper presentation]. 4th Colloquium on Textile Reinforced Structures (CTRS4) (pp. 1–13). http://www.qucosa.de/fileadmin/data/qucosa/documents/436/paper02_aa11_qucosa.pdf.
  • Kurban, M., Babaarslan, O., & Çağatay, İH. (2017). Hybrid yarn composites for construction. In Textiles for advanced applications (pp. 135–160). InTech.
  • Kurban, M., Babaarslan, O., & Çağatay, İH. (2022). Investigation of the flexural behaviour of textile reinforced concrete with braiding yarn structure. Construction and Building Materials, 334(November), 127434. https://doi.org/10.1016/j.conbuildmat.2022.127434
  • Kyosev, Y. (2015). Braiding technology for textiles. Amsterdam: Elsevier.
  • Laiblová, L., Pešta, J., Kumar, A., Hájek, P., Fiala, C., Vlach, T., & Kočí, V. (2019). Environmental impact of textile reinforced concrete facades compared to conventional solutions-lca case study. Materials, 12(19), 3194. https://doi.org/10.3390/ma12193194
  • Lau, K. W., & Dias, T. (1994). Knittability of high-modulus yarns. Journal of the Textile Institute, 85(2), 173–190. https://doi.org/10.1080/00405009408659018
  • Lauke, B., Bunzel, U., & Schneider, K. (1998). Effect of hybrid yarn structure on the delamination behaviour of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 29(11), 1397–1409. https://doi.org/10.1016/S1359-835X(98)00059-1
  • Lee, M., Mata-Falcón, J., & Kaufmann, W. (2020). Load-deformation behaviour of concrete tension ties with weft-knitted textile reinforcement [Paper presentation]. 13th Fib International PhD Symposium in Civil Engineering (pp. 70–77). https://doi.org/10.3929/ethz-b-000438439
  • Lee, M., Mata-Falcón, J., & Kaufmann, W. (2021). Load-deformation behaviour of weft-knitted textile reinforced concrete in uniaxial tension. Materials and Structures, 54(6), 210. https://doi.org/10.1617/s11527-021-01797-5
  • Lee, M., Mata-Falcón, J., & Kaufmann, W. (2022a). Analysis of the tension chord in the flexural response of concrete elements: Methodology and application to weft-knitted textile reinforcement. Engineering Structures, 261(December 2021), 114270. https://doi.org/10.1016/j.engstruct.2022.114270
  • Lee, M., Mata-Falcón, J., & Kaufmann, W. (2022b). Influence of short glass fibres and spatial features on the mechanical behaviour of weft-knitted textile reinforced concrete elements in bending. Construction and Building Materials, 344(June), 128167. https://doi.org/10.1016/j.conbuildmat.2022.128167
  • Lee, M., Mata-Falcón, J., Popescu, M., Block, P., & Kaufmann, W. (2020). Potential approaches for reinforcing complex concrete structures with integrated flexible formwork. In F. P. Bos, S. S. Lucas, R. J. M. Wolfs, & T. A. M. Salet (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication (Vol. 28, pp. 669–679). Cham: Springer International Publishing.
  • Lengersdorf, M., & Gries, T. (2016). Three-dimensional (3D)-maypole braiding. In Y. Kyosev (Ed.), Advances in braiding technology (pp. 89–105). Amsterdam: Elsevier.
  • “Leno Weaving – PosiLeno® is the innovative, flexible and heald-based weaving system.” (2019). Groz-Beckert KG EN 05.2019. https://www.groz-beckert.com/mm/media/en/web/pdf/PosiLeno.pdf.
  • Li, C., Guo, R., Xian, G., & Li, H. (2020). Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fibre hybrid rod. Polymer Testing, 90(July), 106761. https://doi.org/10.1016/j.polymertesting.2020.106761
  • Li, C., Yin, X., Liu, Y., Guo, R., & Xian, G. (2020). Long-term service evaluation of a pultruded carbon/glass hybrid rod exposed to elevated temperature, hydraulic pressure and fatigue load coupling. International Journal of Fatigue, 134(September 2019), 105480. https://doi.org/10.1016/j.ijfatigue.2020.105480
  • Li, C., Yin, X., Wang, Y., Zhang, L., Zhang, Z., Liu, Y., & Xian, G. (2020). Mechanical property evolution and service life prediction of pultruded carbon/glass hybrid rod exposed in harsh oil-well condition. Composite Structures, 246(March), 112418. https://doi.org/10.1016/j.compstruct.2020.112418
  • Li, H., Chen, H., Li, X., & Zhang, F. (2019). Design and construction application of concrete canvas for slope protection. Powder Technology, 344, 937–946. https://doi.org/10.1016/j.powtec.2018.12.075
  • Li, H., Liebscher, M., Ranjbarian, M., Hempel, S., Tzounis, L., Schröfl, C., & Mechtcherine, V. (2019). Electrochemical modification of carbon fibre yarns in cementitious pore solution for an enhanced interaction towards concrete matrices. Applied Surface Science, 487(November 2018), 52–58. https://doi.org/10.1016/j.apsusc.2019.04.246
  • Li, H., Zhang, W., Chen, H., Han, Y., Zhang, J., & Han, F. (2022). Lattice modeling for the influence of geometrical patterns of 3D spacer fabric on tensile behaviour of concrete canvas. Journal of Sandwich Structures & Materials, 24(1), 696–719. https://doi.org/10.1177/10996362211020430
  • Li, W., & Xu, J. (2009). Impact characterization of basalt fibre reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Materials Science and Engineering: A, 513-514(C), 145–153. https://doi.org/10.1016/j.msea.2009.02.033
  • Lieboldt, M., & Mechtcherine, V. (2013). Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures. Cement and Concrete Research, 52, 53–62. https://doi.org/10.1016/j.cemconres.2013.05.012
  • Lieboldt, M., Helbig, U., & Engler, T. (2006). Textile reinforced concrete multilayer composite pipes [Paper presentation]. ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete (pp. 369–378). https://doi.org/10.1617/2351580087.036
  • Lieboldt, M., Hempel, R., Schorn, H., Franzke, G., & Helbig, U. (2005). Textile reinforced concrete and polymer pipes [Paper presentation]. 1st Central European Congress on Concrete Engineers: Fibre Reinforced Concrete in Practice, 8–9 September, Graz, Austria.
  • Lindemann, H., Gerbers, R., Ibrahim, S., Dietrich, F., Herrmann, E., Dröder, K., Raatz, A., & Kloft, H. (2019). Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures [Paper presentation]. First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018 (pp. 287–298). https://doi.org/10.1007/978-3-319-99519-9_27
  • Lior, N., Erez, G., & Alva, P. (2020). Tensile behaviour of fabric-cement-based composites reinforced with non-continuous load bearing yarns. Construction and Building Materials, 236, 117432. https://doi.org/10.1016/j.conbuildmat.2019.117432
  • Liu, Q., Du, W., Uddin, N., & Zhou, Z. (2018). Flexural behaviours of concrete/EPS-foam/glass-fibre composite sandwich panel. Advances in Materials Science and Engineering, 2018, 1–10. https://doi.org/10.1155/2018/5286757
  • Liu, S., Rawat, P., Wang, X., & Zhu, D. (2019). Low velocity impact behaviour of AR-glass textile reinforced mortar under varying range of loading and temperatures. Construction and Building Materials, 228, 116773. https://doi.org/10.1016/j.conbuildmat.2019.116773
  • Liu, S., Zhu, D., Li, G., Yao, Y., Ou, Y., Shi, C., & Du, Y. (2018). Flexural response of basalt textile reinforced concrete with pre-tension and short fibres under low-velocity impact loads. Construction and Building Materials, 169, 859–876. https://doi.org/10.1016/j.conbuildmat.2018.02.168
  • Liu, X.-M., Jiang, J.-H., Chen, N.-L., & Feng, X.-W. (2009). Effect of manufacturing parameters on the tensile properties and yarn damage of glass fibre warp-knitted net preforms. Journal of Industrial Textiles, 38(3), 233–249. https://doi.org/10.1177/1528083708091250
  • Lorenz, E., & Ortlepp, R. (2012). Bond behaviour of textile reinforcements - Development of a pull-out test and modeling of the respective bond versus slip relation. In G. J. Parra-Montesinos, H. W. Reinhardt, & A. E. Naaman (Eds.), High performance fibre reinforced cement composites (Vol. 2, pp. 479–486). Dordrecht: Springer Netherlands.
  • Lu, X., Wang, B., Yuan, K., & Zhao, J. (2022). Influence of textile reinforced self-stressing concrete with three-dimensional collabourative textile on crack resistance and bending properties. Journal of Building Engineering, 61(August), 105261. https://doi.org/10.1016/j.jobe.2022.105261
  • Ma, X., Kuang, X., He, H., Chen, C., Dong, Z., & Ma, P. (2023). Mechanical performance of cementitious composites reinforced with weft-knitted spacer fabrics under static flexural and impact loading. Construction and Building Materials, 384(April), 131376. https://doi.org/10.1016/j.conbuildmat.2023.131376
  • Ma, X., Mei, Z., & Ma, P. (2022). Influence of water to cement ratio on mechanical performance of concrete canvas reinforced with warp-knitted spacer fabric. Geotextiles and Geomembranes, 50(4), 708–719. https://doi.org/10.1016/j.geotexmem.2022.03.011
  • Mader, E., Plonka, R., Schiekel, M., & Hempel, R. (2004). Coatings on alkali-resistant glass fibres for the improvement of concrete. Journal of Industrial Textiles, 33(3), 191–207. https://doi.org/10.1177/1528083704039833
  • Mäder, E., Rausch, J., & Schmidt, N. (2008). Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites. Composites Part A: Applied Science and Manufacturing, 39(4), 612–623. https://doi.org/10.1016/j.compositesa.2007.07.011
  • May, S., Michler, H., Schladitz, F., & Curbach, M. (2018). Lightweight ceiling system made of carbon reinforced concrete. Structural Concrete, 19(6), 1862–1872. https://doi.org/10.1002/suco.201700224
  • Mechtcherine, V., Michel, A., Liebscher, M., & Schmeier, T. (2020). Extrusion-based additive manufacturing with carbon reinforced concrete: Concept and feasibility study. Materials, 13(11), 2568. https://doi.org/10.3390/ma13112568
  • Mechtcherine, V., Michel, A., Liebscher, M., Schneider, K., & Großmann, C. (2020). Mineral-impregnated carbon fibre composites as novel reinforcement for concrete construction: Material and automation perspectives. Automation in Construction, 110(March 2019), 103002. https://doi.org/10.1016/j.autcon.2019.103002
  • Melenka, G. W., Hunt, A. J., van Ravenhorst, J. H., Akkerman, R., Pastore, C. M., Ko, F. K., …, Carey, J. P. (2017). Manufacturing processes for braided composite materials. In J. P. Carey (Ed.), Handbook of advances in braided composite materials (pp. 47–153). Amsterdam: Elsevier.
  • Memon, A., & Nakai, A. (2013a). Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion moulding. Energy Procedia, 34, 818–829. https://doi.org/10.1016/j.egypro.2013.06.818
  • Memon, A., & Nakai, A. (2013b). The processing design of jute spun yarn/PLA braided composite by pultrusion moulding. Advances in Mechanical Engineering, 5, 816513. https://doi.org/10.1155/2013/816513
  • Michaeli, W., & Jürss, D. (1996). Thermoplastic pull-braiding: Pultrusion of profiles with braided fibre lay-up and thermoplastic matrix system (PP). Composites Part A: Applied Science and Manufacturing, 27(1), 3–7. https://doi.org/10.1016/1359-835X(95)00004-L
  • Michler, H. (2013). Segmentbrücke aus textilbewehrtem Beton - Rottachsteg Kempten im Allgäu. Beton- Und Stahlbetonbau, 108(5), 325–334. https://doi.org/10.1002/best.201300023
  • Minsch, N., Müller, M., Gereke, T., Nocke, A., & Cherif, C. (2018). Novel fully automated 3D coreless filament winding technology. Journal of Composite Materials, 52(22), 3001–3013. https://doi.org/10.1177/0021998318759743
  • Minsch, N., Müller, M., Gereke, T., Nocke, A., & Cherif, C. (2019). 3D truss structures with coreless 3D filament winding technology. Journal of Composite Materials, 53(15), 2077–2089. https://doi.org/10.1177/0021998318820583
  • Mishra, R., Militky, J., Gupta, N., Pachauri, R., & Behera, B. K. (2015). Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Composites Part B: Engineering, 81, 91–97. https://doi.org/10.1016/j.compositesb.2015.07.008
  • Mobasher, B., & Pivacek, A. (1998). A filament winding technique for manufacturing cement based cross-ply laminates. Cement and Concrete Composites, 20(5), 405–415. https://doi.org/10.1016/S0958-9465(98)00011-0
  • Mobasher, B., Jain, N., Aldea, C. M., & Soranakom, C. (2007). Mechanical Properties of alkali resistant glass fabric composites for retrofitting unreinforced masonry walls. SP-244: Thin Fibre and Textile Reinforced Cementitious Systems, SP-244, 125–140. https://doi.org/10.14359/18756
  • Moon, D. Y., Sim, J., & Oh, H. (2007). Experimental characterization of the bond performance of a new type of glass fibre-reinforced polymer rebar for application in concrete structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 221(2), 113–119. https://doi.org/10.1243/14644207JMDA109
  • Mukhopadhyay, S., Kumar, S. P., & Venkatesh Babu, D. L. (2006). Role of fabric structure on moisture retention and its effect on concrete strength. Journal of Industrial Textiles, 36(1), 59–72. https://doi.org/10.1177/1528083706064380
  • Naaman, A. E. (2010). Textile reinforced cement composites: Competitive status and research directions [Paper presentation]. International RILEM Conference on Material Science (pp. 3–22). https://www.rilem.net/images/publis/pro075-001.pdf.
  • Nanni, A., Henneke, M. J., & Okamoto, T. (1994a). Behaviour of concrete beams with hybrid reinforcement. Construction and Building Materials, 8(2), 89–95. https://doi.org/10.1016/S0950-0618(09)90017-4
  • Nanni, A., Henneke, M. J., & Okamoto, T. (1994b). Tensile properties of hybrid rods for concrete reinforcement. Construction and Building Materials, 8(1), 27–34. https://doi.org/10.1016/0950-0618(94)90005-1
  • Nanni, A., Okamoto, T., Tanigaki, M., & Osakada, S. (1993). Tensile properties of braided FRP rods for concrete reinforcement. Cement and Concrete Composites, 15(3), 121–129. https://doi.org/10.1016/0958-9465(93)90001-P
  • Nishimura, A., & Hattori, A. (1997). Carbon-fibre woven fabrics for a concrete-structure retrofit. Journal of the Textile Institute, 88(3), 74–82. https://doi.org/10.1080/00405009708658588
  • Nunes, J. P., Silva, J. F., & Novo, P. J. (2013). Processing thermoplastic matrix towpregs by pultrusion. Advances in Polymer Technology, 32(S1), E306–E312. https://doi.org/10.1002/adv.21279
  • Olivito, R. S., Cevallos, O. A., & Carrozzini, A. (2014). Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Materials and Design, 57, 258–268. https://doi.org/10.1016/j.matdes.2013.11.023
  • Orlowsky, J., Raupach, M., Cuypers, H., & Wastiels, J. (2005). Durability modelling of glass fibre reinforcement in cementitious environment. Materials and Structures, 38(276), 155–162. https://doi.org/10.1617/14248
  • Padaki, N. V., Alagirusamy, R., & Sugun, B. S. (2006). Knitted preforms for composite applications. Journal of Industrial Textiles, 35(4), 295–321. https://doi.org/10.1177/1528083706060784
  • Pakravan, H. R., Jamshidi, M., & Rezaei, H. (2016). Effect of textile surface treatment on the flexural properties of textile-reinforced cementitious composites. Journal of Industrial Textiles, 46(1), 116–129. https://doi.org/10.1177/1528083715576320
  • Pakravan, H., Jamshidi, M., Latifi, M., & Neshastehriz, M. (2011). Application of polypropylene nonwoven fabrics for cement composites reinforcement. Asian Journal of Civil Engineering, 12(5), 551–562.
  • Park, J., Park, S.-K., & Hong, S. (2020). Experimental study of flexural behaviour of reinforced concrete beam strengthened with prestressed textile-reinforced mortar. Materials, 13(5), 1137. https://doi.org/10.3390/ma13051137
  • Pastore, C. M., & Ko, F. K. (1999). Braided hybrid composites for bridge repair, national textile center annual report (Project No: F98-P01, pp. 1–8). Drexel University, Philadelphia.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8066&rep=rep1&type=pdf
  • Pekmezci, B., Kayaoglu, B., Pourdeyhimi, B., & Karadeniz, A. (2014). Utility of polyvinyl alcohol fibre-based needle punched nonwoven fabric as potential reinforcement in cementitious composites. Journal of Composite Materials, 48(25), 3129–3140. https://doi.org/10.1177/0021998313507614
  • Peled, A. (2007a). Pre-tensioning of fabrics in cement-based composites. Cement and Concrete Research, 37(5), 805–813. https://doi.org/10.1016/j.cemconres.2007.02.010
  • Peled, A. (2007b). Textiles as reinforcements for cement composites under impact loading [Paper presentation]. Fifth International RILEM Workshop on High Performance Fibre Reinforced Cement Composites (HPFRCC5) (pp. 455–462).
  • Peled, A. (2016). Bonds in textile-reinforced concrete composites. In T. Triantafillou (Ed.), Textile fibre composites in civil engineering (pp. 63–99). Amsterdam: Elsevier.
  • Peled, A., & Bentur, A. (1998). Reinforcement of cementitious matrices by warp knitted fabrics. Materials and Structures, 31(8), 543–550. https://doi.org/10.1007/BF02481536
  • Peled, A., & Bentur, A. (2000). Geometrical characteristics and efficiency of textile fabrics for reinforcing cement composites. Cement and Concrete Research, 30(5), 781–790. https://doi.org/10.1016/S0008-8846(00)00239-8
  • Peled, A., & Bentur, A. (2003a). Fabric structure and its reinforcing efficiency in textile reinforced cement composites. Composites Part A: Applied Science and Manufacturing, 34(2), 107–118. https://doi.org/10.1016/S1359-835X(03)00003-4
  • Peled, A., & Bentur, A. (2003b). Quantitative description of the pull-out behaviour of crimped yarns from cement matrix. Journal of Materials in Civil Engineering, 15(6), 537–544. https://doi.org/10.1061/(asce)0899-1561(2003)15:6(537)
  • Peled, A., & Mobasher, B. (2005). Pultruded fabric-cement composites. ACI Materials Journal, 102(1), 15–23. https://doi.org/10.14359/14245
  • Peled, A., & Mobasher, B. (2006). Properties of fabric–cement composites made by pultrusion. Materials and Structures, 39(8), 787–797. https://doi.org/10.1617/s11527-006-9171-3
  • Peled, A., & Mobasher, B. (2007). Tensile behaviour of fabric cement-based composites: Pultruded and cast. Journal of Materials in Civil Engineering, 19(4), 340–348. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:4(340)
  • Peled, A., Bentur, A., & Yankelevsky, D. (1994). Woven fabric reinforcement of cement matrix. Advanced Cement Based Materials, 1(5), 216–223. https://doi.org/10.1016/1065-7355(94)90027-2
  • Peled, A., Bentur, A., & Yankelevsky, D. (1998). Effects of woven fabric geometry on the bonding performance of cementitious composites. Advanced Cement Based Materials, 7(1), 20–27. https://doi.org/10.1016/S1065-7355(97)00012-6
  • Peled, A., Bentur, A., & Yankelevsky, D. (1999). Flexural Performance of Cementitious Composites Reinforced with Woven Fabrics. Journal of Materials in Civil Engineering, 11(4), 325–330. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(325)
  • Peled, A., Cohen, Z., Pasder, Y., Roye, A., & Gries, T. (2008). Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cement and Concrete Composites, 30(3), 174–183. https://doi.org/10.1016/j.cemconcomp.2007.09.001
  • Peled, A., Mobasher, B., & Bentur, A. (2017). Textile reinforced concrete. Boca Raton, FL: CRC Press.
  • Peled, A., Sueki, S., & Mobasher, B. (2006). Bonding in fabric–cement systems: Effects of fabrication methods. Cement and Concrete Research, 36(9), 1661–1671. https://doi.org/10.1016/j.cemconres.2006.05.009
  • Peled, A., Zaguri, E., & Marom, G. (2008). Bonding characteristics of multifilament polymer yarns and cement matrices. Composites Part A: Applied Science and Manufacturing, 39(6), 930–939. https://doi.org/10.1016/j.compositesa.2008.03.012
  • Peled, A., Zhu, D., & Mobasher, B. (2012). Impact behavior of 3D fabric reinforced cementitious composites. In G. J. Parra-Montesinos, H. W. Reinhardt, & A. E. Naaman (Eds.), RILEM state of the art reports book series: High performance fibre reinforced cement composites 6 (Vol. 2, pp. 543–550). Dordrecht: Springer.
  • Pham, H. H., Dinh, N. H., Kim, S., Park, S., & Choi, K.-K. (2022). Tensile behavioural characteristics of lightweight carbon textile-reinforced cementitious composites. Journal of Building Engineering, 57(April), 104848. https://doi.org/10.1016/j.jobe.2022.104848
  • Popescu, M., Rippmann, M., Van Mele, T., & Block, P. (2016). Complex concrete casting: Knitting stay-in-place fabric formwork [Paper presentation]. Proceedings of the IASS Annual Symposium 2016 : Spatial Structures in the 21st Century (pp. 1–9). https://block.arch.ethz.ch/brg/files/POPESCU_2016_IASS_complex-concrete-casting-knitting-stay-in-place-formwork_1545049665.pdf.
  • Portal, N. W., Lundgren, K., Wallbaum, H., & Malaga, K. (2015). Sustainable potential of textile-reinforced concrete. Journal of Materials in Civil Engineering, 27(7), 1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001160
  • Pourasee, A., Peled, A., & Weiss, J. (2011). Fluid transport in cracked fabric-reinforced-cement-based composites. Journal of Materials in Civil Engineering, 23(8), 1227–1238. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000289
  • Preinstorfer, P., Huber, P., Huber, T., Kromoser, B., & Kollegger, J. (2021). Experimental investigation and analytical modelling of shear strength of thin walled textile-reinforced UHPC beams. Engineering Structures, 231, 111735. https://doi.org/10.1016/j.engstruct.2020.111735
  • Premkumar, S., & Thangamani, K. (2017). Study of woven and non-woven fabric on water retention property for effective curing of concrete. Journal of the Textile Institute, 108(6), 962–970. https://doi.org/10.1080/00405000.2016.1204975
  • Quadflieg, T., Leimbrink, S., Gries, T., & Stolyarov, O. (2018). Effect of coating type on the mechanical performance of warp-knitted fabrics and cement-based composites. Journal of Composite Materials, 52(19), 2563–2576. https://doi.org/10.1177/0021998317750003
  • Quadflieg, T., Stolyarov, O., & Gries, T. (2016). Carbon rovings as strain sensors for structural health monitoring of engineering materials and structures. Journal of Strain Analysis for Engineering Design, 51(7), 482–492. https://doi.org/10.1177/0309324716655058
  • Quadflieg, T., Stolyarov, O., & Gries, T. (2017). Influence of the fabric construction parameters and roving type on the tensile property retention of high-performance rovings in warp-knitted reinforced fabrics and cement-based composites. Journal of Industrial Textiles, 47(4), 453–471. https://doi.org/10.1177/1528083716652831
  • Ramasamy, A., Wang, Y., & Muzzy, J. (1996). Braided thermoplastic composites from powder-coated towpregs. Part III: Consolidation and mechanical properties. Polymer Composites, 17(3), 515–522. https://doi.org/10.1002/pc.10641
  • Rambo, D. A. S., de Andrade Silva, F., Toledo Filho, R. D., & da Fonseca Martins Gomes, O. (2015). Effect of elevated temperatures on the mechanical behaviour of basalt textile reinforced refractory concrete. Materials and Design, 65, 24–33. https://doi.org/10.1016/j.matdes.2014.08.060
  • Rana, S., & Fangueiro, R. (2015). Braided composites: Production, properties, and latest developments. In S. Rana & R. Fangueiro (Eds.), Braided structures and composites: Production, properties, mechanics, and technical applications (1st ed., pp. 97–123). Boca Raton, FL: CRC Press.
  • Rana, S., Zdraveva, E., Pereira, C., Fangueiro, R., & Correia, A. G. (2014). Development of hybrid braided composite rods for reinforcement and health monitoring of structures. Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/170187
  • Raphael, B., Senthilnathan, S., Patel, A., & Bhat, S. (2023). A review of concrete 3D printed structural members. Frontiers in Built Environment, 8(January), 1–21. https://doi.org/10.3389/fbuil.2022.1034020
  • Raz, S. (2000). The Karl Mayer guide to technical textiles (pp. 1–36). Obertshausen, Germany: Karl Mayer Textilmaschinenfabrik GmbH.
  • Reinhardt, H. W., Krüger, M., & Große, C. U. (2003). Concrete prestressed with textile fabric. Journal of Advanced Concrete Technology, 1(3), 231–239. https://doi.org/10.3151/jact.1.231
  • RILEM Technical Committee 232-TDT (Wolfgang Brameshuber). (2016). Recommendation of RILEM TC 232-TDT: Test methods and design of textile reinforced concrete: Uniaxial tensile test: Test method to determine the load bearing behaviour of tensile specimens made of textile reinforced concrete. Mater Struct Constr, 49(12), 4923–4927. https://doi.org/10.1617/s11527-016-0839-z
  • Rosado, K. P., Rana, S., Pereira, C., & Fangueiro, R. (2012). Self-sensing hybrid composite rod with braided reinforcement for structural health monitoring. Materials Science Forum, 730–732, 379–384. https://doi.org/10.4028/www.scientific.net/MSF.730-732.379
  • Roye, A., & Gries, T. (2007). 3-D textiles for advanced cement based matrix reinforcement. Journal of Industrial Textiles, 37(2), 163–173. https://doi.org/10.1177/1528083707078136
  • Roye, A., Gries, T., & Peled, A. (2004). Spacer fabrics for thin walled concrete elements. In M. di Prisco, R. Felicetti, & G. A. Plizzari (Ed.), PRO 39: 6th International RILEM Symposium on Fibre Reinforced Concretes - BEFIB 2004, 20-22 September, Varenna, Italy (pp. 1505–1514). RILEM Publications SARL. https://www.rilem.net/publication/publication/44?id_papier=780.
  • Sachs, S., Vandenbossche, J. M., Alland, K., DeSantis, J., & Khazanovich, L. (2016). Effects of interlayer systems on reflective cracking in unbonded overlays of existing concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, 2591(1), 33–41. https://doi.org/10.3141/2591-06
  • Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021a). Characterization of a textile waste nonwoven fabric reinforced cement composite for non-structural building components. Construction and Building Materials, 276, 122179. https://doi.org/10.1016/j.conbuildmat.2020.122179
  • Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021b). A textile waste fibre-reinforced cement composite: Comparison between short random fibre and textile reinforcement. Materials, 14(13), 3742. https://doi.org/10.3390/ma14133742
  • Sasi, E. A., & Peled, A. (2015). Three dimensional (3D) fabrics as reinforcements for cement-based composites. Composites Part A: Applied Science and Manufacturing, 74, 153–165. https://doi.org/10.1016/j.compositesa.2015.04.008
  • Scheerer, S., Chudoba, R., Garibaldi, M. P., & Curbach, M. (2017). Shells made of textile reinforced concrete - Applications in Germany. Journal of the International Association for Shell and Spatial Structures, 58(1), 79–93. https://doi.org/10.20898/j.iass.2017.191.846
  • Scheffler, C., Gao, S. L., Plonka, R., Mäder, E., Hempel, S., Butler, M., & Mechtcherine, V. (2009). Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: Fibre properties and durability. Composites Science and Technology, 69(3–4), 531–538. https://doi.org/10.1016/j.compscitech.2008.11.027
  • Scheurer, M., Kalthoff, M., Matschei, T., Raupach, M., & Gries, T. (2022). Analysis of curing and mechanical performance of pre-impregnated carbon fibres cured within concrete. Textiles, 2(4), 657–672. https://doi.org/10.3390/textiles2040038
  • Schladitz, F., Frenzel, M., Ehlig, D., & Curbach, M. (2012). Bending load capacity of reinforced concrete slabs strengthened with textile reinforced concrete. Engineering Structures, 40, 317–326. https://doi.org/10.1016/j.engstruct.2012.02.029
  • Schneider, H. N., Schätzke, C., & Bergmann, I. (2006). Textile reinforced concrete-applications and prototypes [Paper presentation]. ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete, 6-7 September Aachen, Germany (pp. 297–308). RILEM Publications SARL. https://doi.org/10.1617/2351580087.029
  • Schneider, K., Lieboldt, M., Liebscher, M., Fröhlich, M., Hempel, S., Butler, M., … Mechtcherine, V. (2017). Mineral-based coating of plasma-treated carbon fibre rovings for carbon concrete composites with enhanced mechanical performance. Materials, 10(4), 360. https://doi.org/10.3390/ma10040360
  • Schneider, K., Michel, A., Liebscher, M., Terreri, L., Hempel, S., & Mechtcherine, V. (2019). Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cement and Concrete Composites, 97, 68–77. https://doi.org/10.1016/j.cemconcomp.2018.12.006
  • Scholzen, A., Chudoba, R., & Hegger, J. (2015). Thin-walled shell structures made of textile-reinforced concrete Part I: Structural design and construction. Structural Concrete, 16(1), 106–114. https://doi.org/10.1002/suco.201300071
  • Schreiber, F. (2016). Three-dimensional hexagonal braiding. In Y. Kyosev (Ed.). Advances in braiding technology (pp. 79–88). Amsterdam: Elsevier.
  • Schreiber, F., Ko, F. K., Yang, H. J., Amalric, E., & Gries, T. (2009). Novel three-dimensional braiding approach and its products. Edinburgh, United Kingdom: International Conferences on Composite Materials. https://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Materials/3D%20TEXTILES%20&%20COMP/D1.17%20Schreiber.pdf
  • Seo, D.-W., Park, K.-T., You, Y.-J., & Lee, S.-Y. (2016). Experimental investigation for tensile performance of GFRP-steel hybridized rebar. Advances in Materials Science and Engineering, 2016, 1–12. https://doi.org/10.1155/2016/9401427
  • Sharei, E., Scholzen, A., Hegger, J., & Chudoba, R. (2017). Structural behaviour of a lightweight, textile-reinforced concrete barrel vault shell. Composite Structures, 171, 505–514. https://doi.org/10.1016/j.compstruct.2017.03.069
  • Signorini, C., Sola, A., Nobili, A., & Siligardi, C. (2019). Lime-cement textile reinforced mortar (TRM) with modified interphase. Journal of Applied Biomaterials & Functional Materials, 17(1), 2280800019827823. https://doi.org/10.1177/2280800019827823
  • Silva, A. C. L. D., Silva, C. L. D., Monteiro, A. K. C., & Frota, C. A. (2021). Interference of natural vibrations in four-point bending test on beams with asphalt composite made with calcined clay aggregate. Cerâmica, 67(383), 344–350. https://doi.org/10.1590/0366-69132021673833032
  • Silva, F. D. A., Butler, M., Zhu, D., Mechtcherine, V., & Mobasher, B. (2010). Strength and fracture behaviour of textile reinforced concrete subjected to high rate tensile loading. In W. Brameshuber (Ed.), PRO 75: International RILEM Conference on Material Science-MATSCI (pp. 215–224). Aachen, Germany: RILEM Publications SARL.
  • Silva, F. D. A., Butler, M., Mechtcherine, V., Zhu, D., & Mobasher, B. (2011). Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading. Materials Science and Engineering: A, 528(3), 1727–1734. https://doi.org/10.1016/j.msea.2010.11.014
  • Silva, F. D. A., Mobasher, B., & Filho, R. D. T. (2009). Cracking mechanisms in durable sisal fibre reinforced cement composites. Cement and Concrete Composites, 31(10), 721–730. https://doi.org/10.1016/j.cemconcomp.2009.07.004
  • Silva, F. D. A., Zhu, D., Mobasher, B., Soranakom, C., & Toledo Filho, R. D. (2010). High speed tensile behaviour of sisal fibre cement composites. Materials Science and Engineering: A, 527(3), 544–552. https://doi.org/10.1016/j.msea.2009.08.013
  • Singh, B. (2018). Rice husk ash. In R. Siddique & P. Cachim (Eds.), Waste and supplementary cementitious materials in concrete (pp. 417–460). Amsterdam: Elsevier.
  • Soe, K. T., Zhang, Y. X., & Zhang, L. C. (2013). Impact resistance of hybrid-fibre engineered cementitious composite panels. Composite Structures, 104, 320–330. https://doi.org/10.1016/j.compstruct.2013.01.029
  • Stolyarov, O., Quadflieg, T., & Gries, T. (2015). Effects of fabric structures on the tensile properties of warp-knitted fabrics used as concrete reinforcements. Textile Research Journal, 85(18), 1934–1945. https://doi.org/10.1177/0040517515578334
  • Taha, N., Walzer, A. N., & Ruangjun, J. (2019). Robotic AeroCrete-A novel robotic spraying and surface treatment technology for the production of slender reinforced concrete elements [Paper presentation]. Proceedings of 37 eCAADe and XXIII SIGraDi Joint Conference, “Architecture in the Age of the 4Th Industrial Revolution” (pp. 245–256). https://doi.org/10.5151/proceedings-ecaadesigradi2019_675
  • Tanaka, Y., Torun, A. R., Lebel, L. L., Ohtani, A., & Nakai, A. (2010). Development of pultrusion system for continuous fiber reinforced thermoplastic composite tube with braiding technique [Paper presentation]. 10th International Conference on Flow Processes in Composite Materials (FPCM10), 11-15 July, Ascona, Switzerland. https://ecm-academics.plymouth.ac.uk/jsummerscales/fpcm/fpcm10/fpcm10_submission_70.pdf
  • Tasler, G., Wiedenhoft, K., Schultheiss, M., Schonfuss, M., & Ludwig, T. (1989). A stitch-bonding machine. United Kingdom Patent GB2210902A, Kombinat Textima VEB.
  • Tatsuno, D., Yoneyama, T., Kinari, T., Sakanishi, E., Ochiai, T., & Taniichi, Y. (2021). Braid-press forming for manufacturing thermoplastic CFRP tube. International Journal of Material Forming, 14(4), 753–762. https://doi.org/10.1007/s12289-020-01584-7
  • Tekle, B. H., Messerer, D., & Holschemacher, K. (2021). Bond induced concrete splitting failure in textile-reinforced fine-grained concrete. Construction and Building Materials, 303(August), 124503. https://doi.org/10.1016/j.conbuildmat.2021.124503
  • “Technical fabrics – High-speed leno weaving, OptiLeno.” (2019). Picanol EN 24.09.2019. https://www.picanol.be/sites/default/files/2019-12/technical_fabrics_brochure.pdf.
  • Tepfers, R., Tamužs, V., Apinis, R., Vilks, U., & Modniks, J. (1996). Ductility of nonmetallic hybrid fibre composite reinforcement for concrete. Mechanics of Composite Materials, 32(2), 113–121. https://doi.org/10.1007/BF02254777
  • Teymouri, P., Zargaran, M., & Attari, N. K. A. (2013). Special nylon fabric as a new material for reinforcing cement composite. Advanced Materials Research, 772, 167–172. https://doi.org/10.4028/www.scientific.net/AMR.772.167
  • Tsangouri, E., Van Driessche, A., Livitsanos, G., & Aggelis, D. G. (2020). Design, casting and fracture analysis of textile reinforced cementitious shells. Developments in the Built Environment, 3(June), 100013. https://doi.org/10.1016/j.dibe.2020.100013
  • Tsesarsky, M., Peled, A., Katz, A., & Anteby, I. (2013). Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells - Static and impact properties. Construction and Building Materials, 44, 514–523. https://doi.org/10.1016/j.conbuildmat.2013.03.031
  • Tyagi, S., Lee, J. Y., Buxton, G. A., & Balazs, A. C. (2004). Using nanocomposite coatings to heal surface defects. Macromolecules, 37(24), 9160–9168. https://doi.org/10.1021/ma048773l
  • Uddin, N. U., & Mousa, M. A. (2013). Innovative fibre-reinforced polymer (FRP) composites for disaster-resistant buildings. In Developments in fibre-reinforced polymer (FRP) composites for civil engineering (pp. 272–302). Amsterdam: Elsevier.
  • Uozumi, T., Kito, A., & Yamamoto, T. (2005). CFRP using braided preforms/RTM process for aircraft applications. Advanced Composite Materials, 14(4), 365–383. https://doi.org/10.1163/156855105774470366
  • Valeri, P., Fernàndez Ruiz, M., & Muttoni, A. (2020). Tensile response of textile reinforced concrete. Construction and Building Materials, 258, 119517. https://doi.org/10.1016/j.conbuildmat.2020.119517
  • Valeri, P., Guaita, P., Baur, R., Fernández Ruiz, M., Fernández-Ordóñez, D., & Muttoni, A. (2020). Textile reinforced concrete for sustainable structures: Future perspectives and application to a prototype pavilion. Structural Concrete, 21(6), 2251–2267. https://doi.org/10.1002/suco.201900511
  • Van der Woerd, J. D., Chudoba, R., & Hegger, J. (2016). Folded bike shell-ter: Application of Oricrete design and manufacturing method. In K. Kawaguchi, M. Ohsaki, & T. Takeuchi (Ed.), Proceedings of the IASS Symposium: Spatial Structures in the 21st Century - Form Finding & Optimization, International Association for Shell and Spatial Structures (IASS), 26–30 September Tokyo, Japan.
  • van der Woerd, J. D., Hegger, J., & Chudoba, R. (2022). SPP 1542: Design and construction of folded plate structures made of novel cementitious composites. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-799948. https://doi.org/10.25368/2022.325
  • Varsei, M., Shaikhzadeh Najar, S., Hosseini, M., & Seyed Razzaghi, M. (2013). Bending properties of fine-grained concrete composite beams reinforced with single-layer carbon/polypropylene woven fabrics with different weave designs and thread densities. Journal of the Textile Institute, 104(11), 1213–1220. https://doi.org/10.1080/00405000.2013.787269
  • Vassiliadis, S., Kallivretaki, A., Psilla, N., Provatidis, C., Mecit, D., & Roye, A. (2009). Numerical modelling of the compressional behaviour of warp-knitted spacer fabrics. Fibres & Textiles in Eastern Europe, 17(5), 56–61. http://www.fibtex.lodz.pl/pliki/Fibtex_(eoqb4dl3pua3i6wm).pdf
  • Venigalla, S. G., Nabilah, A. B., Mohd Nasir, N. A., Safiee, N. A., & Abd Aziz, F. N. A. (2022). Textile-reinforced concrete as a structural member: A review. Buildings, 12(4), 474. https://doi.org/10.3390/buildings12040474
  • Vivek, S. S., & Dhinakaran, G. (2022). Strength and microstructure properties of self-compacting concrete using mineral admixtures. Case study I. In F. Colangelo, R. Cioffi, & I. Farina (Eds.), Handbook of sustainable concrete and industrial waste management (pp. 387–405). Amsterdam: Elsevier.
  • Volkova, A., Paykov, A., Semenov, S., Stolyarov, O., & Melnikov, B. (2016). Flexural behaviour of textile-reinforced concrete [Paper presentation]. International Scientific Conference Week of Science in SPbPU – Civil Engineering (SPbWOSCE-2015). https://doi.org/10.1051/matecconf/20165301016
  • Voss, S., & Hegger, J. (2006). Dimensioning of textile reinforced concrete structures [Paper presentation]. ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete (pp. 151–160). https://doi.org/10.1617/2351580087.015
  • Wang, Q., Ding, Y., Zhang, Y., & Castro, C. (2021). Effect of macro polypropylene fibre and basalt fibre on impact resistance of basalt fibre-reinforced polymer-reinforced concrete. Structural Concrete, 22(1), 503–515. https://doi.org/10.1002/suco.201900482
  • Wang, Y. Q., & Wang, A. S. D. (1994). On the topological yarn structure of 3-D rectangular and tubular braided preforms. Composites Science and Technology, 51(4), 575–586. https://doi.org/10.1016/0266-3538(94)90090-6
  • Weichold, O. (2010). Preparation and properties of hybrid cement-in-polymer coatings used for the improvement of fiber-matrix adhesion in textile reinforced concrete. Journal of Applied Polymer Science, 116(6), 3303–3309. https://doi.org/10.1002/app.31815
  • Weichold, O., & Hojczyk, M. (2009). Size effects in multifilament glass-rovings: The influence of geometrical factors on their performance in textile-reinforced concrete. Textile Research Journal, 79(16), 1438–1445. https://doi.org/10.1177/0040517508100628
  • Weichold, O., & Möller, M. (2007). A cement-in-poly(vinyl alcohol) dispersion for improved fibre-matrix adhesion in continuous glass-fibre reinforced concrete. Advanced Engineering Materials, 9(8), 712–715. https://doi.org/10.1002/adem.200700113
  • Weise, D., Vorhof, M., Brünler, R., Sennewald, C., Hoffmann, G., & Cherif, C. (2019). Reduction of weaving process-induced warp yarn damage and crimp of leno scrims based on coarse high-performance fibres. Textile Research Journal, 89(16), 3326–3341. https://doi.org/10.1177/0040517518809049
  • Wiegand, N., & Mäder, E. (2017). Commingled yarn spinning for thermoplastic/glass fibre composites. Fibers, 5(3), 26. https://doi.org/10.3390/fib5030026
  • Williams Portal, N., Fernandez Perez, I., Nyholm Thrane, L., & Lundgren, K. (2014). Pull-out of textile reinforcement in concrete. Construction and Building Materials, 71, 63–71. https://doi.org/10.1016/j.conbuildmat.2014.08.014
  • Won, J.-P., & Park, C.-G. (2006). Effect of environmental exposure on the mechanical and bonding properties of hybrid frp reinforcing bars for concrete structures. Journal of Composite Materials, 40(12), 1063–1076. https://doi.org/10.1177/0021998305057362
  • Won, J.-P., Park, C.-G., & Jang, C.-I. (2007). Tensile fracture and bond properties of ductile hybrid FRP reinforcing bars. Polymers and Polymer Composites, 15(1), 9–16. https://doi.org/10.1177/096739110701500102
  • Woon Park, J., Lee, J., & Mook Lim, Y. (2022). Flexural behaviour prediction of a layered composite member with 3D textile reinforced concrete. Construction and Building Materials, 325(February), 126665. https://doi.org/10.1016/j.conbuildmat.2022.126665
  • Xu, S. L., Shen, L. H., Wang, J. Y., & Fu, Y. (2014). High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate. Journal of Zhejiang University Science A, 15(1), 31–38. https://doi.org/10.1631/jzus.A1300150
  • Xu, S., & Li, H. (2007). Bond properties and experimental methods of textile reinforced concrete. Journal of Wuhan University of Technology-Materials Science Edition, 22(3), 529–532. https://doi.org/10.1007/s11595-006-3529-9
  • Xu, S., Krüger, M., Reinhardt, H. W., & Ožbolt, J. (2004). Bond characteristics of carbon, alkali resistant glass, and aramid textiles in mortar. Journal of Materials in Civil Engineering, 16(4), 356–364. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(356)
  • Yılmaz, E., Arslan, H., & Bideci, A. (2019). Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). Construction and Building Materials, 202, 806–813. https://doi.org/10.1016/j.conbuildmat.2019.01.057
  • Yoo, D.-Y., & Banthia, N. (2019). Impact resistance of fibre-reinforced concrete – A review. Cement and Concrete Composites, 104(June), 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389
  • Yoo, D.-Y., Gohil, U., Gries, T., & Yoon, Y.-S. (2016). Comparative low-velocity impact response of textile-reinforced concrete and steel-fibre-reinforced concrete beams. Journal of Composite Materials, 50(17), 2421–2431. https://doi.org/10.1177/0021998315604039
  • You, Y.-J., Park, K.-T., Seo, D.-W., & Hwang, J.-H. (2015). Tensile strength of GFRP reinforcing bars with hollow section. Advances in Materials Science and Engineering, 2015, 1–8. https://doi.org/10.1155/2015/621546
  • Yuksel, I. (2018). Blast-furnace slag. In R. Siddique & P. Cachim (Eds.), Waste and supplementary cementitious materials in concrete (pp. 361–415). Amsterdam: Elsevier.
  • Žák, J., & Štemberk, P. (2019). Fire temperature influence on the textile reinforced concrete with non-woven polypropylene fabric. IOP Conference Series: Materials Science and Engineering, 596(1), 012044. https://doi.org/10.1088/1757-899X/596/1/012044
  • Žák, J., Štemberk, P., & Vodička, J. (2017). Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric. IOP Conference Series: Materials Science and Engineering, 246(1), 012054. https://doi.org/10.1088/1757-899X/246/1/012054
  • Zakaria, M., Ahmed, M., Hoque, M. M., & Hannan, A. (2015). Effect of jute yarn on the mechanical behaviour of concrete composites. SpringerPlus, 4(1), 731. https://doi.org/10.1186/s40064-015-1504-7
  • Zakaria, M., Ahmed, M., Hoque, M., & Shaid, A. (2020). A comparative study of the mechanical properties of jute fibre and yarn reinforced concrete composites. Journal of Natural Fibers, 17(5), 676–687. https://doi.org/10.1080/15440478.2018.1525465
  • Zargaran, M., Attari, N. K. A., & Alizadeh, S. (2023). Flexural behaviour of high-performance and non-high-performance textile reinforced concrete composites. European Journal of Environmental and Civil Engineering, 27(2), 893–907. https://doi.org/10.1080/19648189.2022.2068651
  • Zargaran, M., Attari, N. K. A., Alizadeh, S., & Teymouri, P. (2017). Minimum reinforcement ratio in TRC panels for deflection hardening flexural performance. Construction and Building Materials, 137, 459–469. https://doi.org/10.1016/j.conbuildmat.2017.01.091
  • Zdanowicz, K., Schmidt, B., Naraniecki, H., & Marx S. (2019). Bond behaviour of chemically prestressed textile reinforced concrete [Paper presentation]. IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management - Report, March (pp. 297–303). https://doi.org/10.2749/guimaraes.2019.0297
  • Zdraveva, E., Gonilho-Pereira, C., Fangueiro, R., Lanceros-Méndez, S., Jalali, S., & Araújo, M. (2010). Multifunctional braided composite rods for civil engineering applications. Advanced Materials Research, 123–125, 149–152. https://doi.org/10.4028/www.scientific.net/AMR.123-125.149
  • Zhang, F., Chen, H., Li, X., Li, H., Lv, T., Zhang, W., & Yang, Y. (2017). Experimental study of the mechanical behaviour of FRP-reinforced concrete canvas panels. Composite Structures, 176, 608–616. https://doi.org/10.1016/j.compstruct.2017.05.072
  • Zhang, M. H., Sharif, M. S. H., & Lu, G. (2007). Impact resistance of high-strength fibre-reinforced concrete. Magazine of Concrete Research, 59(3), 199–210. https://doi.org/10.1680/macr.2007.59.3.199
  • Zhao, J., Liebscher, M., Michel, A., Junger, D., Trindade, A. C. C., de Andrade Silva, F., & Mechtcherine, V. (2021). Development and testing of fast curing, mineral-impregnated carbon fibre (MCF) reinforcements based on metakaolin-made geopolymers. Cement and Concrete Composites, 116, 103898. https://doi.org/10.1016/j.cemconcomp.2020.103898
  • Zhou, R., Hu, H., Chen, N., & Feng, X. (2005). An improved MWK structure for composite reinforcement. Textile Research Journal, 75(4), 342–345. https://doi.org/10.1177/0040517505054731
  • Zhou, X., Ghaffar, S. H., Dong, W., Oladiran, O., & Fan, M. (2013). Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Materials and Design, 49, 35–47. https://doi.org/10.1016/j.matdes.2013.01.029
  • Zhu, D., Peled, A., & Mobasher, B. (2011). Dynamic tensile testing of fabric–cement composites. Construction and Building Materials, 25(1), 385–395. https://doi.org/10.1016/j.conbuildmat.2010.06.014
  • Zinck, P., Mäder, E., & Gerard, J. F. (2001). Role of silane coupling agent and polymeric film former for tailoring glass fibre sizings from tensile strength measurements. Journal of Materials Science, 36(21), 5245–5252. https://doi.org/10.1023/A:1012410315601

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.