161
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Wool: applications, insect-proofing treatments and the preparation of wool powder

, , , , , & show all

References

  • Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber: Review. Journal of Natural Fibers, 19(2), 497–512. https://doi.org/10.1080/15440478.2020.1745128
  • Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30, 101216. https://doi.org/10.1016/j.jobe.2020.101216
  • Asadpour, R., Sapari, N. B., Tuan, Z. Z., Jusoh, H., Riahi, A., & Uka, O. K. (2013). Application of sorbent materials in oil spill management: A review. Caspian Journal of Applied Sciences Research, 2(2), 46–58.
  • Atef El-Sayed, A., Salama, M., & Kantouch, A. A. M. (2015). Wool micro powder as a metal ion exchanger for the removal of copper and zinc. Desalination and Water Treatment, 56(4), 1010–1019. https://doi.org/10.1080/19443994.2014.941300
  • Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48(2), 101–120. https://doi.org/10.1016/0003-682X(95)00042-8
  • Benisek, L. (1984). Zirpro wool textiles. Fire and Materials, 8(4), 183–195. https://doi.org/10.1002/fam.810080403
  • Benisek, L., Edmondson, G. K., & Phillips, W. A. (1979). Protective clothing: Evaluation of zirpro wool and other fabrics. Fire and Materials, 3(3), 156–166. https://doi.org/10.1002/fam.810030308
  • Berardi, U., Iannace, G., & Di Gabriele, M. (2016). Characterization of sheep wool panels for room acoustic applications. Proceedings of Meetings on Acoustics, 28(1), 15001. https://doi.org/10.1121/2.0000336/835777
  • Bhattacharyya, D., Subasinghe, A., & Kim, N. K., (2015). Chapter 4 – Natural fibers: Their composites and flammability characterizations. In K., Friedrich & U. Breuer, (Eds.), Multifunctionality of polymer composites: Challenges and new solutions (pp. 102–143). New York: William Andrew Publishing. https://doi.org/10.1016/B978-0-323-26434-1.00004-0
  • Bray, R. J., & Carter, E. G. (1951). Trends in wool research. Journal of the Textile Institute Proceedings, 42(8), P361–P384. https://doi.org/10.1080/19447015108663849
  • Breniquet, C., & Michel, C. (2014). Wool economy in the ancient near east and the Aegean. In C. Breniquet & C. Michel (Eds.), Wool economy in the ancient near east (Vol. 17, pp. 1–11). London: Oxbow Books. https://doi.org/10.2307/j.ctvh1djjn.4
  • Broda, J. (2019). Biodegradation of sheep wool geotextiles designed for erosion control. In H. Saldarriaga-Noreña, M. A. Murillo-Tovar, R. Farooq, R. Dongre, & S. Riaz (Eds.), Environmental chemistry and recent pollution control approaches. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.84334
  • Broda, J., & Gawlowski, A. (2020). Influence of sheep wool on slope greening. Journal of Natural Fibers, 17(6), 820–832. https://doi.org/10.1080/15440478.2018.1534190
  • Broda, J., Gawłowski, A., Przybyło, S., Biniaś, D., Rom, M., Grzybowska-Pietras, J., & Laszczak, R. (2018). Innovative wool geotextiles designed for erosion protection. Journal of Industrial Textiles, 48(3), 599–611. https://doi.org/10.1177/1528083717695837
  • Broda, J., Mitka, A., & Gawłowski, A. (2020). Greening of road slope reinforced with wool fibres. Materials Today: Proceedings, 31, S280–S285. https://doi.org/10.1016/j.matpr.2020.01.249
  • Cai, Z., Al Faruque, M. A., Kiziltas, A., Mielewski, D., & Naebe, M. (2021). Sustainable lightweight insulation materials from textile-based waste for the automobile industry. Materials (Basel, Switzerland), 14(5), 1241. https://doi.org/10.3390/ma14051241
  • Cardamone, J. M. (2013). Flame resistant wool and wool blends. In F. Selcen Kilinc (Ed.), Handbook of fire resistant textiles (pp. 245–271). London: Woodhead Publishing. https://doi.org/10.1533/9780857098931.2.245
  • Cătălina Mihaela Helepciuc. (2017). Sheep Wool-a Natural Material used in Civil Engineering. The Bulletin of the Polytechnic Institute of Jassy, Construction. Architecture Section, 63(67), 21–30.
  • Chang, H., Li, Q., Cui, X., Wang, H., Bu, Z., Qiao, C., & Lin, T. (2018). Conversion of carbon dioxide into cyclic carbonates using wool powder-ki as catalyst. Journal of CO2 Utilization, 24, 174–179. https://doi.org/10.1016/j.jcou.2017.12.017
  • Chang, H., Li, Q., Xu, C., Li, R., Wang, H., Bu, Z., & Lin, T. (2017). Wool powder: An efficient additive to improve mechanical and thermal properties of poly(propylene carbonate). Composites Science and Technology, 153, 119–127. https://doi.org/10.1016/j.compscitech.2017.10.012
  • Chen, N., Liu, C. K., Brown, E. M., & Latona, N. (2020). Environment-friendly treatment to reduce photoyellowing and improve UV-blocking of wool. Polymer Degradation and Stability, 181, 109319. https://doi.org/10.1016/j.polymdegradstab.2020.109319
  • Cheng, Y. F., Yuen, C. W. M., Li, Y., Ku, S. K. A., Kan, C. W., & Hu, J. Y. (2007). Characterization of nanoscale wool particles. Journal of Applied Polymer Science, 104(2), 803–808. https://doi.org/10.1002/app.25631
  • Collie, S. (2009). Intelligent wool apparel. In N. A. G. Johnson & I. M. Russell (Eds.), Advances in wool technology (pp. 308–322). London: Woodhead Publishing. https://doi.org/10.1533/9781845695460.2.308
  • Corfield, M. C., & Robson, A. (1955). The amino acid composition of wool. The Biochemical Journal, 59(1), 62–68. https://doi.org/10.1042/BJ0590062
  • Daria, M., Krzysztof, L., & Jakub, M. (2020). Characteristics of biodegradable textiles used in Environmental Engineering: A comprehensive review. Journal of Cleaner Production, 268, 122129. https://doi.org/10.1016/j.jclepro.2020.122129
  • del Rey, R., Uris, A., Alba, J., & Candelas, P. (2017). Characterization of sheep wool as a sustainable material for acoustic applications. Materials (Basel, Switzerland), 10(11), 1277. https://doi.org/10.3390/MA10111277
  • Dénes, O., Florea, I., & Manea, D. L. (2019). Utilization of sheep wool as a building material. Procedia Manufacturing, 32, 236–241. https://doi.org/10.1016/j.promfg.2019.02.208
  • Doyle, E. K., Preston, J. W. V., Mcgregor, B. A., & Hynd, P. I. (2021). The science behind the wool industry. The importance and value of wool production from sheep. Animal Frontiers: The Review Magazine of Animal Agriculture, 11(2), 15–23. https://doi.org/10.1093/af/vfab005
  • Eberle, H., Gonser, E., Hermeling, H., Hornberger, M., Kupke, R., Menzer, D., & Moll, A. (2014). Fibres. In W. Ring & R. Kilgus (Eds.), Clothing technology: From fibre to fashion (6th English Ed., pp. 6–20). Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG.
  • El Mogahzy, Y. E., (2009). Structure, characteristics and types of fiber for textile product design. In Y. E. El Mogahzy, (Ed.), Engineering textiles (pp. 208–239). London: Woodhead Publishing. https://doi.org/10.1533/9781845695415.2.208
  • Erdogan, U. H., Seki, Y., & Selli, F. (2020). Wool fibres. Handbook of Natural Fibres: Second Edition, 1, 257–278. https://doi.org/10.1016/B978-0-12-818398-4.00011-6
  • Feroz, S., Muhammad, N., Ranayake, J., & Dias, G. (2020). Keratin - Based materials for biomedical applications. Bioactive Materials, 5(3), 496–509. https://doi.org/10.1016/j.bioactmat.2020.04.007
  • Friedman, M., John, F. A., Roy, E. B., & Simonaitis, A. (1979). Mothproofing wool and wool blends with permethrin. Journal of Agricultural and Food Chemistry, 27(2), 331–336. https://doi.org/10.1021/jf60222a001
  • Geiger, W. B., Kobayashi, F. F., & Harris, M. (1942). Chemically modified wool. Textile Research, 13(1), 21–36. https://doi.org/10.1177/004051754201300106
  • Giteru, S. G., Ramsey, D. H., Hou, Y., Cong, L., Mohan, A., & Bekhit, A. E. (2023). Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications. Comprehensive Reviews in Food Science and Food Safety, 22(1), 643–687. https://doi.org/10.1111/1541-4337.13087
  • Gogoi, M., Kadam, V., Jose, S., Shakyawar, D. B., & Kalita, B. (2022). Multifunctional finishing of Woolens with lemongrass oil. Journal of Natural Fibers, 19(4), 1353–1365. https://doi.org/10.1080/15440478.2020.1764458
  • Guna, V., Ilangovan, M., Vighnesh, H. R., Sreehari, B. R., Abhijith, S., Sachin, H. E., Mohan, C. B., & Reddy, N. (2021). Engineering sustainable waste wool biocomposites with high flame resistance and noise insulation for green building and automotive applications. Journal of Natural Fibers, 18(11), 1871–1881. https://doi.org/10.1080/15440478.2019.1701610
  • Guo, H., Song, H., Gan, L., Xia, L., Sheng, D., Liu, Y., Xu, W., Gan, L., Wang, A., Wang, Y., Xia, L., & Wang, Y. (2020). Is it feasible to use dyed wool powder as pigment? Advanced Powder Technology, 31(12), 4632–4641. https://doi.org/10.1016/j.apt.2020.10.007
  • Gurarslan, A., Özdemir, B., Bayat, İH., Yelten, M. B., & Karabulut Kurt, G. (2019). Silver nanowire coated knitted wool fabrics for wearable electronic applications. Journal of Engineered Fibers and Fabrics, 14, 155892501985622. https://doi.org/10.1177/1558925019856222
  • Häring, M., Pettignano, A., Quignard, F., Tanchoux, N., & Díaz Díaz, D. (2016). Keratin protein-catalyzed nitroaldol (Henry) reaction and comparison with other biopolymers. Molecules (Basel, Switzerland), 21(9), 1122. https://doi.org/10.3390/molecules21091122
  • Hartley, R. S., Elsworth, F. F., & Barrritt, J. (1943). The mothproofing of wool. Journal of the Society of Dyers and Colourists, 59(12), 266–271. https://doi.org/10.1111/j.1478-4408.1943.tb02211.x
  • Hassabo, A. G., Salama, M., Mohamed, A. L., & Popescu, C. (2015). Ultrafine wool and cotton powder and their characteristics. Journal of Natural Fibers, 12(2), 141–153. https://doi.org/10.1080/15440478.2014.903819
  • Hassabo, A. G., Salama, M., & Popescu, C. (2015). Characterizations of PVA composites based on recycled ultrafine cotton and wool powders. Research & Reviews in Bioscience, 10(4), 147–158.
  • Hearle, J. W. S., (2002). Chapter 4 – Physical properties of wool. In. W. S., Simpson & G. H. Crawshaw, (Eds.), Wool (pp. 80–129). London: Woodhead Publishing. https://doi.org/10.1533/9781855737648.80
  • Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86. https://doi.org/10.1007/s11837-006-0234-2
  • Holcombe, B. (2009). Wool performance apparel for sport. In N. A. G. Johnson & I. M. Russell (Eds.), Advances in wool technology (pp. 265–283). London: Woodhead Publishing. https://doi.org/10.1533/9781845695460.2.265
  • Hustvedt, G., Meier, E., & Waliczek, T. (2016). The feasibility of large-scale composting of waste wool. In S. Muthu & M. Gardetti (Eds.), Green fashion. Environmental footprints and eco-design of products and processes. Singapore: Springer. https://doi.org/10.1007/978-981-10-0111-6_4
  • Islam, S., Arnold, L., & Padhye, R. (2012). Wound dressing utilising nonwoven wool matrix. Advanced Materials Research, 535-537, 1534–1541. https://doi.org/10.4028/www.scientific.net/AMR.535-537.1534
  • Johnson, N. A. G., Wood, E. J., Ingham, P. E., McNeil, S. J., & McFarlane, I. D. (2003). Wool as a technical fibre. Journal of the Textile Institute, 94(3-4), 26–41. https://doi.org/10.1080/00405000308630626
  • Jose, S., Nachimuthu, S., Das, S., & Kumar, A. (2018). Moth proofing of wool fabric using nano kaolinite. The Journal of the Textile Institute, 109(2), 225–231. https://doi.org/10.1080/00405000.2017.1336857
  • Kadam, V., Soni, A., Phand, S., & Kumar, A. (2021). Sheep wool and mutton: Production and value addition. Hyderabad, India: Zenodo. https://doi.org/10.5281/zenodo.5045333
  • Ke, G., & Xu, W. (2012). Preparation and properties of superfine wool powder/chitosan complex membrane. The Journal of the Textile Institute, 103(11), 1183–1188. https://doi.org/10.1080/00405000.2012.670386
  • Kelly, R. (2009). Application of wool keratins ranging from industrial materials to medical devices. In N. A. G. Johnson & I. M. Russell (Eds.), Advances in wool technology (pp. 323–331). London: Woodhead Publishing. https://doi.org/10.1533/9781845
  • Konop, M., Rybka, M., & Drapała, A. (2021). Keratin biomaterials in skin wound healing, an old player in modern medicine: A mini review. Pharmaceutics, 13(12), 2029. https://doi.org/10.3390/PHARMACEUTICS13122029
  • Korjenic, A., Klaric, S., Hadžic, A., & Korjenic, S. (2015). Sheep wool as a construction material for energy efficiency improvement. Energies, 8(6), 5765–5781. https://doi.org/10.3390/en8065765
  • Kuffner, H., & Popescu, C. (2012). Wool fibres. In R. M. Kozłowski (Ed.), Handbook of natural fibres (pp. 171–195). London: Woodhead Publishing. https://doi.org/10.1533/9780857095503.1.171
  • Laing, R. M. (2019). Natural fibres in next-to-skin textiles: current perspectives on human body odour. SN Applied Sciences, 1(11), 1–8. https://doi.org/10.1007/S42452-019-1388-1/METRICS
  • Lal, B., Sharma, S. C., Meena, R. L., Sarkar, S., Sahoo, A., Balai, R. C., Gautam, P., & Meena, B. P. (2020). Utilization of byproducts of sheep farming as organic fertilizer for improving soil health and productivity of barley forage. Journal of Environmental Management, 269, 110765. https://doi.org/10.1016/j.jenvman.2020.110765
  • Lord, P. R., (2003). Textile products and fiber production. In. P. R. & Lord, (Ed.), Handbook of yarn production (pp. 18–55). London: Woodhead Publishing. https://doi.org/10.1533/9781855738652.18
  • McNeil, S. J., Sunderland, M. R., & Leighs, S. J. (2017). The utilisation of wool as a catalyst and as a support for catalysts. Applied Catalysis A: General, 541, 120–140. https://doi.org/10.1016/j.apcata.2017.04.021
  • Medha, K., Rajna, S., Devi, L. J., Samant, L., & Jose, S. (2021). A comprehensive review on moth repellent finishing of woolen textiles. Journal of Cultural Heritage, 49, 260–271. https://doi.org/10.1016/j.culher.2021.02.006
  • Menezes, E. (2000). Technical fibres. Textile Magazine, 43(8), 24–41. https://doi.org/10.1533/9781855738966.24
  • Montazer, M., & Harifi, T., (2018). Nanofinishes for protective textiles. In M., Montazer, T. & Harifi, (Eds.), Nanofinishing of textile materials (pp. 265–294). London: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101214-7.00018-2
  • Morris, H., & Murray, R. (2020). Medical textiles. Textile Progress, 52(1-2), 1–127. https://doi.org/10.1080/00405167.2020.1824468
  • Mureşan Borlea, S. I., Tiuc, A. E., Nemeş, O., Vermeşan, H., & Vasile, O. (2020). Innovative use of sheep wool for obtaining materials with improved sound-absorbing properties. Materials (Basel, Switzerland), 13(3), 694. https://doi.org/10.3390/MA13030694
  • Naik, R., Wen, G., Ms, D., Hureau, S., Uedono, A., Wang, X., Lu, X., & Smith, S. V. (2010). Metal ion binding properties of novel wool powders. Journal of Applied Polymer Science, 115(3), 1642–1650. https://doi.org/10.1002/app.31206
  • Nazari, A. (2017). Efficient mothproofing of wool through natural dyeing with walnut hull and henna against Dermestes maculatus. The Journal of the Textile Institute, 108(5), 755–765. https://doi.org/10.1080/00405000.2016.1186340
  • Nazari, A., Davodi-Roknabadi, A., Matin-Moghadam, A., & Dehghani-Zahedani, M. (2022). Mothproofing protection of wool fabric against A. verbasci using Eucalyptus camaldulensis, Rosmarinus officinalis, and Pinus brutia extracts through pentagonal design. Fibers and Polymers, 23(1), 136–147. https://doi.org/10.1007/s12221-021-0292-7
  • Nazari, A., Montazer, M., & Dehghani-Zahedani, M. (2013). Nano TiO2 as a new tool for mothproofing of wool: Protection of wool against Anthrenus verbasci. Industrial & Engineering Chemistry Research, 52(3), 1365–1371. https://doi.org/10.1021/ie302187c
  • Nazari, A., Montazer, M., & Dehghani-Zahedani, M. (2014). Mothproofing of wool fabric utilizing ZnO nanoparticles optimized by statistical models. Journal of Industrial and Engineering Chemistry, 20(6), 4207–4214. https://doi.org/10.1016/j.jiec.2013.12.112
  • Parlato, M. C. M., & Porto, S. M. C. (2020). Organized framework of main possible applications of sheep wool fibers in building components. Sustainability, 12(3), 761. https://doi.org/10.3390/su12030761
  • Parlato, M. C. M., Porto, S. M. C., & Valenti, F. (2022). Assessment of sheep wool waste as new resource for green building elements. Building and Environment, 225, 109596. https://doi.org/10.1016/j.buildenv.2022.109596
  • Patrucco, A., Cristofaro, F., Simionati, M., Zoccola, M., Bruni, G., Fassina, L., … Tonin, C. (2016). Wool fibril sponges with perspective biomedical applications. Materials Science & Engineering. C, Materials for Biological Applications, 61, 42–50. https://doi.org/10.1016/j.msec.2015.11.073
  • Paulauskienė, T., Jucikė, I., Juščenko, N., & Baziukė, D. (2014). The use of natural sorbents for spilled crude oil and diesel cleanup from the Water Surface. Water, Air, & Soil Pollution, 225(6). https://doi.org/10.1007/s11270-014-1959-0
  • Petek, B., & Marinšek Logar, R. (2021). Management of waste sheep wool as valuable organic substrate in European Union countries. Journal of Material Cycles and Waste Management, 23(1), 44–54. https://doi.org/10.1007/s10163-020-01121-3
  • Poimena Analysis & Delta Consultants, FAO. (2022). IWTO Member countries, AWTA, NZWTA, SUL, ABARES, FLA (Downloaded January).
  • Poimena Analysis, & Delta Consultants. (2021). IWTO Market Information [Ebook] (16th ed.). IWTO. Retrieved 28 April 2022, from https://iwto.org/wp-content/uploads/2021/03/20210315_IWTO_MI_DigitalSample.pdf
  • Popescu, C., & Höcker, H. (2007). Hair—the most sophisticated biological composite material. Chemical Society Reviews, 36(8), 1282–1291. https://doi.org/10.1039/b604537p
  • Popescu, C., & Wortmann, F. J. (2010). Wool – Structure, mechanical properties and technical products based on animal fibres. In C. V. Stevens & J. Müssig (Eds.), Industrial applications of natural fibres: Structure, properties and technical applications (pp. 255–266). New Jersey: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470660324.ch12
  • Radetić, M. M., Jocić, D. M., Iovantić, P. M., Petrović, Z. L. J., & Thomas, H. F. (2003). Recycled wool-based nonwoven material as an oil sorbent. Environmental Science & Technology, 37(5), 1008–1012. https://doi.org/10.1021/es0201303
  • Radetic, M., Ilic, V., Radojevic, D., Miladinovic, R., Jocic, D., & Jovancic, P. (2008). Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere, 70(3), 525–530. https://doi.org/10.1016/j.chemosphere.2007.07.005
  • Rajabi, M., Ali, A., McConnell, M., & Cabral, J. (2020). Keratinous materials: Structures and functions in biomedical applications. Materials Science & Engineering. C, Materials for Biological Applications, 110, 110612. https://doi.org/10.1016/j.msec.2019.110612
  • Rajendran, S., & Hajira Parveen, K. M. (2005). Insect infestation in stored animal products. In. Journal of Stored Products Research, 41(1), 1–30. https://doi.org/10.1016/j.jspr.2003.12.002
  • Rajkhowa, R., Zhou, Q., Tsuzuki, T., Morton, D. A. V., & Wang, X. (2012). Ultrafine wool powders and their bulk properties. Powder Technology, 224, 183–188. https://doi.org/10.1016/j.powtec.2012.02.052
  • Ranjit, E., Hamlet, S., George, R., Sharma, A., & Love, R. M. (2022). Biofunctional approaches of wool-based keratin for tissue engineering. Journal of Science: Advanced Materials and Devices, 7(1), 100398. https://doi.org/10.1016/j.jsamd.2021.10.001
  • Reagan, B. M. (1982). Eradication of Insects from wool textiles. Journal of the American Institute for Conservation, 21(2), 1–34. https://doi.org/10.2307/3179376
  • Rippon, J. A. (2013). The structure of wool. In D. M. Lewis & J. A. Rippon (Eds.), The coloration of wool and other keratin fibres (pp. 1–42). New Jersey: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118625118.CH1
  • Rippon, J. A., Christoe, J. R., Denning, R. J., Evans, D. J., Huson, M. G., Lamb, P. R., … Pierlot, A. P. (2016). Wool: Structure, properties, and processing. In Encyclopedia of polymer science and technology (pp. 1–46). New Jersey: John Wiley & Sons, Ltd. https://doi.org/10.1002/0471440264.PST402.PUB2]
  • Roy Choudhury, A. K. (2013). Green chemistry and the textile industry. Textile Progress, 45(1), 3–143. https://doi.org/10.1080/00405167.2013.807601
  • Russell, I. M., (2009). Sustainable wool production and processing. In. R. S. Blackburn, (Ed.), Sustainable textiles: Life cycle and environmental impact (pp. 63–87). London: Woodhead Publishing. https://doi.org/10.1533/9781845696948.1.63
  • Saricam, C., & Okur, N. (2018). Polyester usage for automotive applications. In N. O. Camlibel (Ed.), Polyester – Production, characterization and innovative applications. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.74206
  • Schlossman, M. L., & McCarthy, J. P. (1978). Lanolin and its derivatives. Journal of the American Oil Chemists’ Society, 55(4), 447–450. https://doi.org/10.1007/BF02911911
  • Schwarz, I., & Kovačević, S. (2017). Textile application: From need to imagination. In B. Kumar & S. Thakur (Eds.), Textiles for advanced applications. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.68376
  • Sengupta, A., & Behera, J. (2014). Comprehensive view on chemistry, manufacturing & applications of lanolin extracted from wool pretreatment. American Journal of Engineering Research, 3(7), 33–43.
  • Shahid-ul-Islam, Mohammad, F. (2016). Sustainable natural fibres from animals, plants and agroindustrial wastes—An overview. In: S. Muthu & M. Gardetti (Eds.) Sustainable fibres for fashion industry. Environmental footprints and eco-design of products and processes. Singapore: Springer. https://doi.org/10.1007/978-981-10-0566-4_3
  • Shakyawar, D. B., Raja, A. S., Kumar, A., & Pareek, P. (2015). Antimoth finishing treatment for woollens using tannin containing natural dyes. Indian Journal of Fibre and Textile Research, 40, 200–202. http://nopr.niscpr.res.in/handle/123456789/31628
  • Sharma, S. C., Sahoo, A., & Chand, R. (2019). Potential use of waste wool in agriculture: An overview. Indian Journal of Small Ruminants (the), 25(1), 1. https://doi.org/10.5958/0973-9718.2019.00019.9
  • Silman, H. (1956). Lanolin—As a temporary protective. Anti-Corrosion Methods and Materials, 3(5), 138–153. https://doi.org/10.1108/EB019172/FULL/XML
  • Simpson, W. S., (2002). Wool production and fibre marketing. In W. S., Simpson & G. H. Crawshaw, (Eds.), Wool (pp. 1–20). London: Woodhead Publishing. https://doi.org/10.1533/9781855737648.1
  • Sykam, K., Försth, M., Sas, G., Restás, Á., & Das, O. (2021). Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Industrial Crops and Products, 164, 113349. https://doi.org/10.1016/j.indcrop.2021.113349
  • Tang, W., Tang, B., Bai, W., Pakdel, E., Wang, J., & Wang, X. (2022). Porous, colorful and gas-adsorption powder from wool waste for textile functionalization. Journal of Cleaner Production, 366, 132805. https://doi.org/10.1016/j.jclepro.2022.132805
  • Tang, W., Wang, J., Bai, W., Rajkhowa, R., Li, D., Tang, B., & Xu, W. (2022). Fine powders from dyed waste wool as odor adsorbent and coloration pigment. Powder Technology, 400, 117261. https://doi.org/10.1016/j.powtec.2022.117261
  • Tinto, W. F., Elufioye, T. O., & Roach, J., (2017). Chapter 22 - Waxes. In S. Badal & R. Delgoda (Eds.), Pharmacognosy: Fundamentals, applications and strategy (pp. 443–455). Massachusetts: Academic Press. https://doi.org/10.1016/B978-0-12-802104-0.00022-6
  • Tridico, S. R. (2009). Natural animal textile fibres: Structure, characteristics and identification. In M. M. Houck (Ed.), Identification of textile fibers. London: Woodhead Publishing. https://doi.org/10.1533/9781845695651.1.27
  • Wang, X., Xu, W., & Wang, X. (2008). Characterization of hot-pressed films from superfine wool powder. Journal of Applied Polymer Science, 108(5), 2852–2856. https://doi.org/10.1002/app.27738
  • Wani, I. A., & Ul Rehman Kumar, R. (2021). Experimental investigation on using sheep wool as fiber reinforcement in concrete giving increment in overall strength. Materials Today: Proceedings, 45, 4405–4409. https://doi.org/10.1016/j.matpr.2020.11.938
  • Wen, G., Cookson, P. G., Liu, X., & Wang, X. G. (2010). The effect of ph and temperature on the dye sorption of wool powders. Journal of Applied Polymer Science, 116(4), 2216–2226. https://doi.org/10.1002/app.31758
  • Wen, G., Rippon, J. A., Brady, P. R., Wang, X. G., Liu, X., & Cookson, P. G. (2009). The characterization and chemical reactivity of powdered wool. Powder Technology, 193(2), 200–207. https://doi.org/10.1016/j.powtec.2009.03.021
  • Wojciechowska, E., Włochowicz, A., & Wesełucha-Birczyńska, A. (1999). Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. Journal of Molecular Structure, 511-512, 307–318. https://doi.org/10.1016/S0022-2860(99)00173-8
  • Wool Supply Chain. (2022). International Wool Textile Organisation. International Wool Textile Organisation. Retrieved 28 April from https://iwto.org/wool-supply-chain/
  • Wortmann, F. J. (2009). The structure and properties of wool and hair fibres. In S. J. Eichhorn, J. W. S. Hearle, M. Jaffe & T. Kikutani (Eds.), Handbook of textile fibre structure (Vol. 2, pp. 108–145). London: Woodhead Publishing. https://doi.org/10.1533/9781845697310.1.108
  • Wu, S., Ma, H., Jia, X., Zhong, Y., & Lei, Z. (2011). Biopolymer-metal complex wool–PD as a highly active heterogeneous catalyst for Heck reaction in aqueous media. Tetrahedron, 67(1), 250–256. https://doi.org/10.1016/j.tet.2010.10.062
  • Xu, W., Cui, W., Li, W., & Guo, W. (2004). Development and characterizations of super-fine wool powder. Powder Technology, 140(1-2), 136–140. https://doi.org/10.1016/j.powtec.2003.12.010
  • Xu, W., Fang, J., Cui, W., & Huang, J. (2006). Modification of polyurethane by superfine protein powder. Polymer Engineering & Science, 46(5), 617–622. https://doi.org/10.1002/pen.20511
  • Xu, W., Guo, W., & Li, W. (2003). Thermal analysis of ultrafine wool powder. Journal of Applied Polymer Science, 87(14), 2372–2376. https://doi.org/10.1002/app.11991
  • Yeates, N. T. M., Edey, T. N., & Hill, M. K., (1975). Chapter 18 – Composition and properties of wool. In N. T. M., Yeats, T. N. Edey & M. K. Hill, (Eds.). Animal science (pp. 278–298). London: Pergamon Press. https://doi.org/10.1016/B978-0-08-018209-4.50022-6
  • Yilmaz, E., Çelik, P., Körlü, A., & Yapar, S. (2020). Determination of the odour adsorption behaviour of wool. Textile & Leather Review, 3(1), 30–39. https://doi.org/10.31881/TLR.2019.12
  • Zach, J., Korjenic, A., Petránek, V., Hroudová, J., & Bednar, T. (2012). Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings, 49, 246–253. https://doi.org/10.1016/j.enbuild.2012.02.014
  • Zahn, H., Wortmann, F.-J., Wortmann, G., Schäfer, K., Hoffmann, R., & Finch, R. (2003). Wool. In Ullmann’s encyclopedia of industrial chemistry. New Jersey: John Wiley & Sons, Ltd. https://doi.org/10.1002/14356007.A28_395
  • Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: A review. Journal of Leather Science and Engineering, 2(1), 1–15. https://doi.org/10.1186/s42825-020-00030-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.