113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3-D woven honeycomb structures and their composites

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abate, K. M., Nazir, A., Yeh, Y. P., Chen, J. E., & Jeng, J. Y. (2020). Design, optimization, and validation of mechanical properties of different cellular structures for biomedical application. The International Journal of Advanced Manufacturing Technology, 106(3-4), 1253–1265. https://doi.org/10.1007/s00170-019-04671-5
  • Abbadi, A., Koutsawa, Y., Carmasol, A., Belouettar, S., & Azari, Z. (2009). Experimental and numerical characterization of honeycomb sandwich composite panels. Simulation Modelling Practice and Theory, 17(10), 1533–1547. https://doi.org/10.1016/j.simpat.2009.05.008
  • Abbadi, A., Tixier, C., Gilgert, J., & Azari, Z. (2015). Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects. Composite Structures, 120, 394–405. https://doi.org/10.1016/j.compstruct.2014.10.020
  • Abd Kadir, N., Aminanda, Y., Ibrahim, M. S., & Mokhtar, H. (2018). Experimental study of low-velocity impact on foam-filled Kraft paper honeycomb structure. IOP Conference Series: Materials Science and Engineering, 290(1), 12082. https://doi.org/10.1088/1757-899X/290/1/012082
  • Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. In Construction and building materials (Vol. 214, pp. 709–735). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2019.04.102
  • Adams, R. D., & Maheri, M. R. (1993). The dynamic shear properties of structural honeycomb materials. Composites Science and Technology, 47(1), 15–23. https://doi.org/10.1016/0266-3538(93)90091-T
  • Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners. International Journal of Mechanical Sciences, 214(August), 106920. https://doi.org/10.1016/j.ijmecsci.2021.106920
  • Ahmad, S., Zhang, J., Feng, P., Yu, D., Wu, Z., & Ke, M. (2020). Processing technologies for Nomex honeycomb composites (NHCs): A critical review. Composite Structures, 250, 112545. https://doi.org/10.1016/j.compstruct.2020.112545
  • Airoldi, A., Bettini, P., Öktem, F. M., Crespi, M., & Sala, G. (2005). Design and manufacturing of a composite rib for a morphing wing with a chiral topology. 16th International Conference on Composite Structures, 219(G3), 185–192.
  • Aktay, L., Çakıroğlu, C., & Güden, M. (2011). Quasi-static axial crushing behavior of honeycomb-filled thin-walled aluminum tubes. The Open Materials Science Journal, 5(1), 184–193. https://doi.org/10.2174/1874088X01105010184
  • Aktay, L., Johnson, A. F., & Holzapfel, M. (2005). Prediction of impact damage on sandwich composite panels. Computational Materials Science, 32(3-4), 252–260. https://doi.org/10.1016/j.commatsci.2004.09.044
  • Aktay, L., Johnson, A. F., & Kröplin, B. H. (2008). Numerical modelling of honeycomb core crush behaviour. Engineering Fracture Mechanics, 75(9), 2616–2630. https://doi.org/10.1016/j.engfracmech.2007.03.008
  • Alderson, A., & Alderson, K. L. (2007). Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4), 565–575. https://doi.org/10.1243/09544100JAERO185
  • Alkbir, M. F. M., Sapuan, S. M., Nuraini, A. A., & Ishak, M. R. (2014). Effect of geometry on crashworthiness parameters of natural kenaf fibre reinforced composite hexagonal tubes. Materials & Design, 60, 85–93. https://doi.org/10.1016/j.matdes.2014.02.031
  • Alkhader, M., & Vural, M. (2009). An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. Journal of the Mechanics and Physics of Solids, 57(5), 871–890. https://doi.org/10.1016/j.jmps.2008.12.005
  • Alomarah, A., Masood, S. H., & Ruan, D. (2020). Out-of-plane and in-plane compression of additively manufactured auxetic structures. Aerospace Science and Technology, 106, 106107. https://doi.org/10.1016/j.ast.2020.106107
  • Alwekar, S., Yeole, P., Kumar, V., Hassen, A. A., Kunc, V., & Vaidya, U. K. (2021). Melt extruded versus extrusion compression molded glass-polypropylene long fiber thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 144(December), 106349. https://doi.org/10.1016/j.compositesa.2021.106349
  • Amaly, N., EL-Moghazy, A. Y., Nitin, N., Sun, G., & Pandey, P. K. (2023). Design, preparation, and application of novel multilayer metal-polyphenol composite on macroporous framework melamine foam for effective filtration removal of tetracycline in fluidic systems. Separation and Purification Technology, 321, 124238. https://doi.org/10.1016/j.seppur.2023.124238
  • Amin Yavari, S., Ahmadi, S. M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., & Zadpoor, A. A. (2015). Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 43, 91–100. https://doi.org/10.1016/j.jmbbm.2014.12.015
  • Amir, A. L., Ishak, M. R., Yidris, N., Zuhri, M. Y. M., & Asyraf, M. R. M. (2021). Potential of honeycomb-filled composite structure in composite cross-arm component: A review on recent progress and its mechanical properties. Polymers, 13(8), 1341. https://doi.org/10.3390/polym13081341
  • Arunkumar, M. P., Pitchaimani, J., Gangadharan, K. V., & Leninbabu, M. C. (2018). Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam. Aerospace Science and Technology, 78, 1–11. https://doi.org/10.1016/j.ast.2018.03.029
  • Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A review of sustainable materials for acoustic applications (Vol. 19).
  • Ashby, M., & Gibson, L. (1997). Cellular solids. United Kingdom: Cambridge University Press.
  • Aslebagh, R., & Cherniaev, A. (2022). Projectile shape effects in hypervelocity impact of honeycomb-core sandwich structures. Journal of Aerospace Engineering, 35(1), 04021112. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001365
  • Avalle, M., Belingardi, G., & Ibba, A. (2007). Mechanical models of cellular solids: Parameters identification from experimental tests. International Journal of Impact Engineering, 34(1), 3–27. https://doi.org/10.1016/j.ijimpeng.2006.06.012
  • Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424–442. https://doi.org/10.1016/j.matdes.2012.11.025
  • Bakatovich, A., Gaspar, F., & Boltrushevich, N. (2022). Thermal insulation material based on reed and straw fibres bonded with sodium silicate and rosin. Construction and Building Materials, 352, 129055. https://doi.org/10.1016/j.conbuildmat.2022.129055
  • Bakhori, N. M., Ismail, Z., Hassan, M. Z., & Dolah, R. (2023). Emerging trends in nanotechnology: Aerogel-based materials for biomedical applications. Nanomaterials (Basel, Switzerland), 13(6), 1063. https://doi.org/10.3390/nano13061063
  • Balıkoğlu, F., Demircioğlu, T. K., Yıldız, M., Arslan, N., & Ataş, A. (2020). Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: Effect of resin pins. Journal of Sandwich Structures & Materials, 22(6), 2030–2048. https://doi.org/10.1177/1099636218792671
  • Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5
  • Baral, N., Cartié, D. D. R., Partridge, I. K., Baley, C., & Davies, P. (2010). Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results. Composites Part B: Engineering, 41(2), 117–123. https://doi.org/10.1016/j.compositesb.2009.12.002
  • Barma, P., Rhodes, M. B., & Salovey, R. (1978). Mechanical properties of particulate-filled polyurethane foams. Journal of Applied Physics, 49(10), 4985–4991. https://doi.org/10.1063/1.324444
  • Behera, B. K., & Mishra, R. (2008). 3-Dimensional weaving. Indian Journal of Fibre & Textile Research, 33, 274–287.
  • Besant, T., Davies, G. A. O., & Hitchings, D. (2001). Finite element modelling of low velocity impact of composite sandwich panels. Composites Part A: Applied Science and Manufacturing, 32(9), 1189–1196. https://doi.org/10.1016/S1359-835X(01)00084-7
  • Bienvenu, Y. (2014). Application and future of solid foams. Comptes Rendus Physique , 15(8-9), 719–730. https://doi.org/10.1016/j.crhy.2014.09.006
  • Bin Zou, B., Davalos, J. F., Karl Barth, C. E., An Chen, C.-C., Means, K. H., Prucz, J. C., & Ray, I. (2008). Design guidelines for frp honeycomb sandwich bridge DECKS College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering.
  • Birman, V., & Kardomateas, G. A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221–240. https://doi.org/10.1016/j.compositesb.2018.01.027
  • Bitzer, T. N. (1997). Honeycomb technology: Materials, design, manufacturing, applications and testing. Springer Science & Business Media.
  • Boldrin, L., Hummel, S., Scarpa, F., Di Maio, D., Lira, C., Ruzzene, M., … Patsias, S. (2016). Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Composite Structures, 149, 114–124. https://doi.org/10.1016/j.compstruct.2016.03.044
  • Brischetto, S., Ciano, A., & Ferro, C. G. (2016). A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process. Curved and Layered Structures, 3(1), 202–213. https://doi.org/10.1515/cls-2016-0016
  • Brischetto, S., Ferro, C. G., Torre, R., & Maggiore, P. (2018). 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures, 5(1), 80–94. https://doi.org/10.1515/cls-2018-0007
  • Buchanan, S., Grigorash, A., Quinn, J. P., McIlhagger, A. T., & Young, C. (2010). Modelling the geometry of the repeat unit cell of three-dimensional weave architectures. Journal of the Textile Institute, 101(7), 679–685. https://doi.org/10.1080/00405000902746586
  • Bull, P. H., & Edgren, F. (2004). Compressive strength after impact of CFRP-foam core sandwich panels in marine applications. Composites Part B: Engineering, 35(6-8), 535–541. https://doi.org/10.1016/j.compositesb.2003.11.007
  • Burlayenko, V. N., & Sadowski, T. (2010). Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates. International Journal of Non-Linear Mechanics, 45(10), 959–968. https://doi.org/10.1016/j.ijnonlinmec.2009.07.002
  • Cadogan, D. P., George, A. E., & Winkler, E. R. (1994). Aircrew helmet design and manufacturing enhancements through the use of advanced technologies. Displays, 15(2), 110–116. https://doi.org/10.1016/0141-9382(94)90065-5
  • Camata, G., & Shing, P. B. (2010). Static and fatigue load performance of a gfrp honeycomb bridge deck. Composites Part B: Engineering, 41(4), 299–307. https://doi.org/10.1016/j.compositesb.2010.02.005
  • Castanie, B., Bouvet, C., & Ginot, M. (2020). Review of composite sandwich structure in aeronautic applications. Composites Part C: Open Access, 1, 100004. https://doi.org/10.1016/j.jcomc.2020.100004
  • Chavhan, M. V., & Mukhopadhyay, A. (2016). Fibrous filter to protect building environments from polluting agents: A review. Journal of the Institution of Engineers (India): Series E, 97(1), 63–73. https://doi.org/10.1007/s40034-015-0071-3
  • Chen, D. H., & Ozaki, S. (2009). Stress concentration due to defects in a honeycomb structure. Composite Structures, 89(1), 52–59. https://doi.org/10.1016/j.compstruct.2008.06.010
  • Chen, X. (2015). Advances in 3D Textiles. In Advances in 3D Textiles. Elsevier. https://doi.org/10.1016/C2013-0-16485-9
  • Chen, X., Ma, Y. L., & Zhang, H. (2004). CAD/CAM for cellular woven structures. The Journal of the Textile Institute, 95(1-6), 229–241. https://doi.org/10.1533/joti.2003.0019
  • Chen, X., & Wang, H. (2006). Modelling and computer-aided design of 3D hollow woven reinforcement for composites. Journal of the Textile Institute, 97(1), 79–87. https://doi.org/10.1533/joti.2005.0215
  • Chen, X., Yu, G., Wang, Z., Feng, L., & Wu, L. (2021). Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs. Composite Structures, 255, 112984. https://doi.org/10.1016/j.compstruct.2020.112984
  • Chen, Y., Das, R., & Battley, M. (2016). Response of honeycombs subjected to in-plane shear. Journal of Applied Mechanics, 83(6). https://doi.org/10.1115/1.4032964
  • Chen, Y., Hou, S., Fu, K., Han, X., & Ye, L. (2017). Low-velocity impact response of composite sandwich structures: Modelling and experiment. Composite Structures, 168, 322–334. https://doi.org/10.1016/j.compstruct.2017.02.064
  • Chen, Z., & Yan, N. (2012). Investigation of elastic moduli of Kraft paper honeycomb core sandwich panels. Composites Part B: Engineering, 43(5), 2107–2114. https://doi.org/10.1016/j.compositesb.2012.03.008
  • Chiu, H. T., Chang, C. Y., Pan, H. W., Chiang, T. Y., Kuo, M. T., & Wang, Y. H. (2012). Characterization of polyurethane foam as heat seal coating in medical pouch packaging application. Journal of Polymer Research, 19(2) https://doi.org/10.1007/s10965-011-9791-3
  • Chiew, Y. C., & Glandt, E. D. (1983). Simultaneous conduction and radiation in porous and composite materials: Effective thermal conductivity. Industrial & Engineering Chemistry Fundamentals, 22(3), 276–282. https://doi.org/10.1021/i100011a002
  • Cho, H. K., & Rhee, J. (2011). Vibration in a satellite structure with a laminate composite hybrid sandwich panel. Composite Structures, 93(10), 2566–2574. https://doi.org/10.1016/j.compstruct.2011.04.019
  • Collishaw, P. G., & Evans, J. R. G. (1994). An assessment of expressions for the apparent thermal conductivity of cellular materials. Journal of Materials Science, 29(2), 486–498. https://doi.org/10.1007/BF00363413
  • Compton, B. G., & Lewis, J. A. (2014). 3D-printing of lightweight cellular composites. Advanced Materials (Deerfield Beach, Fla.), 26(34), 5930–5935. https://doi.org/10.1002/adma.201401804
  • Côté, F., Deshpande, V. S., Fleck, N. A., & Evans, A. G. (2004). The out-of-plane compressive behavior of metallic honeycombs. Materials Science and Engineering: A, 380(1-2), 272–280. https://doi.org/10.1016/j.msea.2004.03.051
  • Davalos, J. F., Qiao, P., Xu, X. F., Robinson, J., & Barth, K. E. (2001). Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. www.elsevier.com/locate/compstruct
  • Davies, G. J., & Zhen, S. (1983). Review Metallic foams: their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911. https://doi.org/10.1007/BF00554981
  • De Micco, C., & Aldao, C. M. (2006). On the prediction of the radiation term in the thermal conductivity of plastic foams. Latin American Applied Research, 36(3), 193–197.
  • De Schampheleire, S., De Jaeger, P., Huisseune, H., Ameel, B., T’Joen, C., De Kerpel, K., & De Paepe, M. (2013). Thermal hydraulic performance of 10 PPI aluminium foam as alternative for louvered fins in an HVAC heat exchanger. Applied Thermal Engineering, 51(1-2), 371–382. https://doi.org/10.1016/j.applthermaleng.2012.09.027
  • Demharter, A. (1998). Polyurethane rigid foam, a proven thermal insulating material for applications between +130 °C and −196 °C. Cryogenics, 38(1), 113–117. https://doi.org/10.1016/S0011-2275(97)00120-3
  • Dharmasena, K. P., Wadley, H. N. G., Xue, Z., & Hutchinson, J. W. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering, 35(9), 1063–1074. https://doi.org/10.1016/j.ijimpeng.2007.06.008
  • Djemaoune, Y., Krstic, B., Rasic, S., Radulovic, D., & Dodic, M. (2022). Experimental investigation of an alternative approach to temporarily repair Nomex honeycomb sandwich structures in aerospace applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(5), 1215–1228. https://doi.org/10.1177/14644207221139182
  • Dou, H., Ye, W., Zhang, D., Cheng, Y., & Wu, C. (2022). Comparative study on in-plane compression properties of 3D printed continuous carbon fiber reinforced composite honeycomb and aluminum alloy honeycomb. Thin-Walled Structures, 176, 109335. https://doi.org/10.1016/j.tws.2022.109335
  • Du, B., Li, Q., Zheng, C., Wang, S., Gao, C., & Chen, L. (2023). Application of lightweight structure in automobile bumper beam: A review. Materials (Basel, Switzerland), 16(3). MDPI. https://doi.org/10.3390/ma16030967
  • Duan, S., Wen, W., & Fang, D. (2018). A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. Journal of the Mechanics and Physics of Solids, 121, 23–46. https://doi.org/10.1016/j.jmps.2018.07.016
  • Duncan, O., Shepherd, T., Moroney, C., Foster, L., Venkatraman, P. D., Winwood, K., … Alderson, A. (2018). Review of auxetic materials for sports applications: Expanding options in comfort and protection. Applied Sciences), 8(6), 941. MDPI AG. https://doi.org/10.3390/app8060941
  • Ebrahimi, S. (2015). Multiobjective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads. Elsevier.
  • Eipakchi, H., & Mahboubi Nasrekani, F. (2020). Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Composite Structures, 254, 112847. https://doi.org/10.1016/j.compstruct.2020.112847
  • Elaya Perumal, A., & Venkateshwaran, N. (2008). Natural fiber-reinforced polymer composites in automotive applications – A review. IJAEA.
  • El-Tayeb, N. S. M. (2008). A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear, 265(1-2), 223–235. https://doi.org/10.1016/j.wear.2007.10.006
  • Evans, K. E. (1991). The design of doubly curved sandwich panels with honeycomb cores. Composite Structures, 17(2), 95–111. https://doi.org/10.1016/0263-8223(91)90064-6
  • Evans, K. E., & Alderson, A. (2000). Auxetic Materials: Functional Materials and Structures from Lateral Thinking!. Advanced Materials, 12(9), 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
  • Evans, K. E., Nkansah, M. A., Hutchinson, I. J., & Rogers, S. C. (1991). Molecular network design [7]. Nature, 353 (6340), 124–124. https://doi.org/10.1038/353124a0
  • Fadhel Mohammed, D. (2016). Experimental and numerical study of bending behavior for honeycomb sandwich panel with different core configurations. In the Iraqi Journal for Mechanical and Material Engineering, 16.
  • Fallah, Y., & Mohammadimehr, M. (2022). On the free vibration behavior of Timoshenko sandwich beam model with honeycomb core and nano-composite face sheet layers integrated by sensor and actuator layers. The European Physical Journal Plus, 137(6). https://doi.org/10.1140/epjp/s13360-022-02896-0
  • Fan, X., Verpoest, I., & Vandepitte, D. (2006). Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. Journal of Sandwich Structures & Materials, 8(5), 437–458. https://doi.org/10.1177/1099636206065862
  • Fávaro, S. L., Lopes, M. S., Vieira de Carvalho Neto, A. G., Rogério de Santana, R., & Radovanovic, E. (2010). Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites Part A: Applied Science and Manufacturing, 41(1), 154–160. https://doi.org/10.1016/j.compositesa.2009.09.021
  • Fediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V., & Ozbakkaloglu, T. (2021). Acoustic properties of innovative concretes: A review. In. Materials (Basel, Switzerland), 14 (2), 398. https://doi.org/10.3390/ma14020398
  • Feng, L., Zhang, G., Chen, J., Chen, L., Li, Y., Geng, Z., … Chen, H. (2020). Based on the lattice structure of the sandwich structure of 3D printing. Journal of Physics: Conference Series, 1549(3), 032121. https://doi.org/10.1088/1742-6596/1549/3/032121
  • Figueroa, E., Shafiq, B., & de la Paz, I. (2013). Creep to failure and cyclic creep of foam core sandwich composites in seawater. Journal of Sandwich Structures & Materials, 15(6), 657–670. https://doi.org/10.1177/1099636213498887
  • Fischer, S., Drechsler, K., Kilchert, S., & Johnson, A. (2009). Mechanical tests for foldcore base material properties. Composites Part A: Applied Science and Manufacturing, 40(12), 1941–1952. https://doi.org/10.1016/j.compositesa.2009.03.005
  • Foo, C. C., Chai, G. B., & Seah, L. K. (2007). Mechanical properties of Nomex material and Nomex honeycomb structure. Composite Structures, 80(4), 588–594. https://doi.org/10.1016/j.compstruct.2006.07.010
  • Foo, C. C., Seah, L. K., & Chai, G. B. (2008). Low-velocity impact failure of aluminium honeycomb sandwich panels. Composite Structures, 85(1), 20–28. https://doi.org/10.1016/j.compstruct.2007.10.016
  • Forero Rueda, M. A., Cui, L., & Gilchrist, M. D. (2009). Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Materials & Design, 30(9), 3405–3413. https://doi.org/10.1016/j.matdes.2009.03.037
  • Gao, Q., Liao, W.-H., & Wang, L. (2020). On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerospace Science and Technology, 98, 105698. https://doi.org/10.1016/j.ast.2020.105698
  • Gaspar, N., Ren, X., Smith, C., Grima, J., & Evans, K. (2005). Novel honeycombs with auxetic behaviour. Acta Materialia, 53(8), 2439–2445. https://doi.org/10.1016/j.actamat.2005.02.006
  • Ghazlan, A., Ngo, T., Tan, P., Xie, Y. M., Tran, P., & Donough, M. (2021). Inspiration from Nature’s body armours – A review of biological and bioinspired composites. Composites Part B: Engineering, 205, 108513. https://doi.org/10.1016/j.compositesb.2020.108513
  • Ghimire, A., Tsai, Y. Y., Chen, P. Y., & Chang, S. W. (2021). Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation. Composites Part B: Engineering, 215, 108754. https://doi.org/10.1016/j.compositesb.2021.108754
  • Gibson, L. J., & Ashby, M. F. (1997). Cellular solids. Cambridge University Press. https://doi.org/10.1017/CBO9781139878326
  • Gibson, L. J., Ashby, M. F., Schajer, G. S., & Robertson, C. I. (1982). Mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 382(1782), 25–42. https://doi.org/10.1098/rspa.1982.0087
  • Gibson, L. J., and A, M. F., & Ashby, M. F. (1997). Cellular solids. In Cambridge University Press. Cambridge University Press. https://doi.org/10.1017/CBO9781139878326
  • Giglio, M., Manes, A., & Gilioli, A. (2012). Investigations on sandwich core properties through an experimental- numerical approach. Composites Part B: Engineering, 43(2), 361–374. https://doi.org/10.1016/j.compositesb.2011.08.016
  • Glicksman, L. R., Marge, A. L., & Moreno, J. D. (1992). Radiation heat transfer in cellular foam insulation. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 203(I), 45–54.
  • Goh, G. D., Agarwala, S., Goh, G. L., Dikshit, V., Sing, S. L., & Yeong, W. Y. (2017). Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology, 63, 140–151. https://doi.org/10.1016/j.ast.2016.12.019
  • Gong, X. (2011). Investigation of different geometric structure parameter for honeycomb textile composites on their mechanical performance University of Manchester. United Kingdom, 5(1).
  • Grima, J. N., Alderson, A., & Evans, K. E. (2004). Negative Poisson’s ratios from rotating rectangles. Computational Methods in Science and Technology, 10(2), 137–145. https://doi.org/10.12921/cmst.2004.10.02.137-145
  • Grima, J. N., Alderson, A., & Evans, K. E. (2005). Auxetic behaviour from rotating rigid units. Physica Status Solidi (B) Basic (b), 242(3), 561–575. https://doi.org/10.1002/pssb.200460376
  • Grima, J. N., Caruana-Gauci, R., Attard, D., & Gatt, R. (2012). Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2146), 3121–3138. https://doi.org/10.1098/rspa.2011.0667
  • Grima, J. N., & Evans, K. E. (2006). Auxetic behavior from rotating triangles. Journal of Materials Science, 41(10), 3193–3196. https://doi.org/10.1007/s10853-006-6339-8
  • Grima, J. N., Oliveri, L., Attard, D., Ellul, B., Gatt, R., Cicala, G., & Recca, G. (2010). Hexagonal honeycombs with zero Poisson’s ratios and enhanced stiffness. Advanced Engineering Materials, 12(9), 855–862. https://doi.org/10.1002/adem.201000140
  • Grosicki, Z. J. (2004). Development of weaves from elementary bases. In Watson’s textile design and colour (pp. 36–61). Elsevier. https://doi.org/10.1016/B978-1-85573-995-6.50006-2
  • Gu, P., & Li, L. (2002). Fabrication of biomedical prototypes with locally controlled properties using FDM. CIRP Annals, 51(1), 181–184. https://doi.org/10.1016/S0007-8506(07)61495-4
  • Gunashekar, S., Pillai, K. M., Church, B. C., & Abu-Zahra, N. H. (2015). Liquid flow in polyurethane foams for filtration applications: a study on their characterization and permeability estimation. Journal of Porous Materials, 22(3), 749–759. https://doi.org/10.1007/s10934-015-9948-2
  • Gunes, R., & Arslan, K. (2016). Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures. Journal of Sandwich Structures & Materials, 18(1), 95–112. https://doi.org/10.1177/1099636215603047
  • Guo, A., Zhao, J., Li, J., Li, F., & Guan, K. (2015). Forming parameters optimisation of biomass cushion packaging material by orthogonal test. Materials Research Innovations, 19(sup5), S5-521–S5-525. https://doi.org/10.1179/1432891714Z.0000000001144
  • Guo, X. S., Nian, T. K., Fan, N., & Jia, Y. G. (2021). Optimization design of a honeycomb-hole submarine pipeline under a hydrodynamic landslide impact. Marine Georesources & Geotechnology, 39(9), 1055–1070. https://doi.org/10.1080/1064119X.2020.1801919
  • Gupta, P., Singh, B., Agrawal, A. K., & Maji, P. K. (2018). Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Materials & Design, 158, 224–236. https://doi.org/10.1016/j.matdes.2018.08.031
  • Gurdjian, E. S., Roberts, V. L., & Thomas, L. M. (1966). Tolerance curve of acceleration and intercranial pressure and protective index in experimental head injury. The Journal of Trauma, 6(5), 600–604. https://doi.org/10.1097/00005373-196609000-00005
  • Hähnel, F., & Wolf, K. (2006). Evaluation of the material properties of resin-impregnated Nomex® paper as basis for the simulation of the impact behaviour of honeycomb sandwich. Proceedings of the 3rd International Conference on Composites Testing and Model Identification, 1–2.
  • Hähnel, F., Wolf, K., Hauffe, A., Alekseev, K. A., & Zakirov, I. M. (2011). Wedge-shaped folded sandwich cores for aircraft applications: From design and manufacturing process to experimental structure validation. CEAS Aeronautical Journal, 2(1-4), 203–212. https://doi.org/10.1007/s13272-011-0014-8
  • Hales, T. C. (2001). The honeycomb conjecture. Discrete & Computational Geometry, 25(1), 1–22. https://doi.org/10.1007/s004540010071
  • Han, D., & Tsai, S. W. (2003). Interlocked composite grids design and manufacturing. Journal of Composite Materials, 37(4), 287–316. https://doi.org/10.1177/0021998303037004681
  • Harkati, E., Daoudi, N., Bezazi, A., Haddad, A., & Scarpa, F. (2017). In-plane elasticity of a multi re-entrant auxetic honeycomb. Composite Structures, 180, 130–139. https://doi.org/10.1016/j.compstruct.2017.08.014
  • Harte, A. M., Fleck, N. A., & Ashby, M. F. (2000). Sandwich panel design using aluminum alloy foam. Advanced Engineering Materials, 2(4), 219–222. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<219::AID-ADEM219>3.0.CO;2-#
  • Hayes, B. S., & Gammon, L. M. (2010). Optical Microscopy of Fiber-Reinforced Composites. In Optical Microscopy of Fiber-Reinforced Composites. ASM International. https://doi.org/10.31399/asm.tb.omfrc.9781627083492
  • He, Q., Feng, J., Chen, Y., & Zhou, H. (2020). Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading. Journal of Sandwich Structures & Materials, 22(3), 771–796. https://doi.org/10.1177/1099636218772295
  • Heimbs, S. (2009). Virtual testing of sandwich core structures using dynamic finite element simulations. Computational Materials Science, 45(2), 205–216. https://doi.org/10.1016/j.commatsci.2008.09.017
  • Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. Jom , 58 (11), 80–86. https://doi.org/10.1007/s11837-006-0234-2
  • Hong, S. T., Pan, J., Tyan, T., & Prasad, P. (2006). Quasi-static crush behavior of aluminum honeycomb specimens under non-proportional compression-dominant combined loads. International Journal of Plasticity, 22(6), 1062–1088. https://doi.org/10.1016/j.ijplas.2005.07.003
  • Hou, Y., Neville, R., Scarpa, F., Remillat, C., Gu, B., & Ruzzene, M. (2014). Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Composites Part B: Engineering, 59, 33–42. https://doi.org/10.1016/j.compositesb.2013.10.084
  • Hu, L. L., Zhou, M., Zh., & Deng, H. (2019). Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Composite Structures, 207, 323–330. https://doi.org/10.1016/j.compstruct.2018.09.066
  • Huang, J., Zhang, Q., Scarpa, F., Liu, Y., & Leng, J. (2017). In-plane elasticity of a novel auxetic honeycomb design. Composites Part B: Engineering, 110, 72–82. https://doi.org/10.1016/j.compositesb.2016.11.011
  • Huang, Z., Zhang, X., & Yang, C. (2020). Experimental and numerical studies on the bending collapse of multi-cell Aluminum/CFRP hybrid tubes. Composites Part B: Engineering, 181, 107527. https://doi.org/10.1016/j.compositesb.2019.107527
  • Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2006). Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Composites Science and Technology, 66(11-12), 1813–1824. https://doi.org/10.1016/j.compscitech.2005.10.015
  • Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. S. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures, 135, 339–352. https://doi.org/10.1016/j.compstruct.2015.09.038
  • Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. S. (2017). Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. Journal of Sandwich Structures & Materials, 19(3), 291–316. https://doi.org/10.1177/1099636215618539
  • Isaac, C. W., & Ezekwem, C. (2021). A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Composite Structures, 257, 113081. https://doi.org/10.1016/j.compstruct.2020.113081
  • Isaac, C. W., Pawelczyk, M., & Wrona, S. (2020). Comparative study of sound transmission losses of sandwich composite double panel walls. Applied Sciences, 10(4), 1543. https://doi.org/10.3390/app10041543
  • Ivañez, I., & Sanchez-Saez, S. (2013). Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core. Composite Structures, 106, 716–723. https://doi.org/10.1016/j.compstruct.2013.07.025
  • Jacob, M., Thomas, S., & Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7-8), 955–965. https://doi.org/10.1016/S0266-3538(03)00261-6
  • Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63. https://doi.org/10.1002/bit.20368
  • Jhatial, A. A., Goh, W. I., Mohamad, N., Rind, T. A., & Sandhu, A. R. (2020). Development of thermal insulating lightweight foamed concrete reinforced with polypropylene fibres. Arabian Journal for Science and Engineering, 45(5), 4067–4076. https://doi.org/10.1007/s13369-020-04382-0
  • Jiang, W., Zhou, J., Liu, J., Zhang, M., & Huang, W. (2023). Free vibration behaviours of composite sandwich plates with reentrant honeycomb cores. Applied Mathematical Modelling, 116, 547–568. https://doi.org/10.1016/j.apm.2022.12.004
  • Johnson, A. F., & Sims, G. D. (1986). Mechanical properties and design of sandwich materials. Composites, 17(4), 321–328. https://doi.org/10.1016/0010-4361(86)90749-4
  • Johnson, W., Reid, S., & Reddy, T. Y. (1977). The compression of crossed layers of thin tubes. International Journal of Mechanical Sciences, 19(7), 423–437. https://doi.org/10.1016/0020-7403(77)90042-X
  • Ju, J., & Summers, J. D. (2011). Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Materials & Design, 32(2), 512–524. https://doi.org/10.1016/j.matdes.2010.08.029
  • Jung, A., & Diebels, S. (2018). Yield surfaces for solid foams: A review on experimental characterization and modeling. Brain Tumor Research and Treatment, 12(1), 1–13. https://doi.org/10.1002/gamm.201800002
  • Kantha Rao, K., Jayathirtha Rao, K., Sarwade, A. G., & Madhava Varma, B. (2012). Bending behavior of aluminum honey comb sandwich panels. International Journal of Engineering and Advanced Technology, 1(4), 268–272.
  • Kao, Y. T., Amin, A. R., Payne, N., Wang, J., & Tai, B. L. (2018). Low-velocity impact response of 3D-printed lattice structure with foam reinforcement. Composite Structures, 192, 93–100. https://doi.org/10.1016/j.compstruct.2018.02.042
  • Kaplan, G., Yavuz Bayraktar, O., Bayrak, B., Celebi, O., Bodur, B., Oz, A., & Aydin, A. C. (2023). Physico-mechanical, thermal insulation and resistance characteristics of diatomite and attapulgite based geopolymer foam concrete: Effect of different curing regimes. Construction and Building Materials, 373, 130850. https://doi.org/10.1016/j.conbuildmat.2023.130850
  • Karlsson, K. F., & Åström, B. T. (1997). Manufacturing and applications of structural sandwich components. Composites Part A: Applied Science and Manufacturing, 28(2), 97–111. https://doi.org/10.1016/S1359-835X(96)00098-X
  • Kaushika, N. D., & Reddy, K. S. (1999). Thermal design and field experiment of transparent honeycomb insulated integrated-collector-storage solar water heater. Applied Thermal Engineering, 19(2), 145–161. https://doi.org/10.1016/S1359-4311(98)00033-7
  • Kee Paik, J., Thayamballi, A. K., & Sung Kim, G. (1999). Strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Structures, 35(3), 205–231. https://doi.org/10.1016/S0263-8231(99)00026-9
  • Keshavanarayana, S. R., Shahverdi, H., Kothare, A., Yang, C., & Bingenheimer, J. (2017). The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core. Composite Structures, 175, 111–122. https://doi.org/10.1016/j.compstruct.2017.05.010
  • Khan, K. A., Al-Mansoor, S., Khan, S. Z., & Khan, M. A. (2019). Piezoelectric metamaterial with negative and zero Poisson’s ratios. Journal of Engineering Mechanics, 145(12). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001674
  • Kholoosi, F., & Galehdari, S. A. (2019). Design, optimisation and analysis of a helmet made with graded honeycomb structure under impact load. International Journal of Crashworthiness, 24(6), 645–655. https://doi.org/10.1080/13588265.2018.1506605
  • Khosravi Maleki, F., Evren Toygar, M., Dikshit, V., Yap, Y. L., Goh, G. D., Yang, H., … Wei, J. (2016). Investigation of out of plane compressive strength of 3D printed sandwich composites. IOP Conference Series: Materials Science and Engineering, 139, 012017. https://doi.org/10.1088/1757-899X/139/1/012017
  • Kim, G., Sterkenburg, R., & Tsutsui, W. (2018). Investigating the effects of fluid intrusion on Nomex® honeycomb sandwich structures with carbon fiber facesheets. Composite Structures, 206, 535–549. https://doi.org/10.1016/j.compstruct.2018.08.054
  • Kim, J. S., & Chung, S. K. (2007). A study on the low-velocity impact response of laminates for composite railway bodyshells. Composite Structures, 77(4), 484–492. https://doi.org/10.1016/j.compstruct.2005.08.020
  • Kim, J. S., Lee, S. J., & Shin, K. B. (2007). Manufacturing and structural safety evaluation of a composite train carbody. Composite Structures, 78(4), 468–476. https://doi.org/10.1016/j.compstruct.2005.11.006
  • Korupolu, D. K., Budarapu, P. R., Vusa, V. R., Pandit, M. K., & Reddy, J. N. (2022). Impact analysis of hierarchical honeycomb core sandwich structures. Composite Structures, 280, 114827. https://doi.org/10.1016/j.compstruct.2021.114827
  • Kujala, P., & Klanac, A. (2005). Steel sandwich panels in marine applications. Brodogradnja, 56(4), 305–314.
  • Kulakov, V., & Aniskevich, A. N. (2012). Structural composites − From aerospace to civil engineering applications. www.InnovationsLine.com
  • Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science (New York, N.Y.), 235(4792), 1038–1040. https://doi.org/10.1126/science.235.4792.1038
  • Lee, Y., Baek, K. H., Choe, K., & Han, C. (2016). Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent. Cryogenics, 80, 44–51. https://doi.org/10.1016/j.cryogenics.2016.09.002
  • Li, D., Zhao, C., Jiang, L., & Jiang, N. (2014). Experimental study on the bending properties and failure mechanism of 3D integrated woven spacer composites at room and cryogenic temperature. Composite Structures, 111, 56–65. https://doi.org/10.1016/j.compstruct.2013.12.026
  • Li, K., Gao, X. L., & Subhash, G. (2005). Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures, 42(5-6), 1777–1795. https://doi.org/10.1016/j.ijsolstr.2004.08.005
  • Li, M., Wang, S., Zhang, Z., & Wu, B. (2009). Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites. Applied Composite Materials, 16(1), 1–14. https://doi.org/10.1007/s10443-008-9072-4
  • Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B: Engineering, 198, 108229. https://doi.org/10.1016/j.compositesb.2020.108229
  • Li, T., & Wang, L. (2017). Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 175, 46–57. https://doi.org/10.1016/j.compstruct.2017.05.001
  • Li, X., Lu, Z., Yang, Z., & Yang, C. (2017). Directions dependence of the elastic properties of a 3D augmented re-entrant cellular structure. Materials & Design, 134, 151–162. https://doi.org/10.1016/j.matdes.2017.08.024
  • Li, Z., Liu, D., Qian, Y., Wang, Y., Wang, T., & Wang, L. (2019). Enhanced strength and weakened dynamic sensitivity of honeycombs by parallel design. International Journal of Mechanical Sciences, 151, 672–683. https://doi.org/10.1016/j.ijmecsci.2018.12.013
  • Li, Z., Yu, Q., Zhao, X., Yu, M., Shi, P., & Yan, C. (2017). Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Advances in Mechanical Engineering, 9(8), 168781401770280. https://doi.org/10.1177/1687814017702806
  • Lim, S., Ji, Y. H., & Park, Y. I. (2021). Simulation of energy absorption performance of the couplers in urban railway vehicles during a heavy collision. Machines, 9(5), 91. https://doi.org/10.3390/machines9050091
  • Lippi, M., Riva, L., Caruso, M., & Punta, C. (2022). Cellulose for the production of air-filtering systems: A critical review. Materials (Basel, Switzerland), 15(3), 976. MDPI. https://doi.org/10.3390/ma15030976
  • Liu, D. S., & Chen, Y. T. (2017). A finite element investigation into the impact performance of an open-face motorcycle helmet with ventilation slots. Applied Sciences, 7(3), 279. https://doi.org/10.3390/app7030279
  • Liu, J., He, W., Xie, D., & Tao, B. (2017). The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Composites Part B: Engineering, 111, 315–331. https://doi.org/10.1016/j.compositesb.2016.11.060
  • Liu, R., & Golovitcher, I. M. (2003). Energy-efficient operation of rail vehicles. Transportation Research Part A: Policy and Practice, 37(10), 917–932. https://doi.org/10.1016/j.tra.2003.07.001
  • Liu, S., Zhang, Y., & Liu, P. (2008). New analytical model for heat transfer efficiency of metallic honeycomb structures. International Journal of Heat and Mass Transfer, 51(25-26), 6254–6258. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.055
  • Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052–1063. https://doi.org/10.5897/SRE.9000104
  • Lombardi, N. J., & Liu, J. (2011). Glass fiber-reinforced polymer/steel hybrid honeycomb sandwich concept for bridge deck applications. Composite Structures, 93(4), 1275–1283. https://doi.org/10.1016/j.compstruct.2010.10.007
  • Lu, C., Zhao, M., Jie, L., Wang, J., Gao, Y., Cui, X., & Chen, P. (2015). Stress distribution on composite honeycomb sandwich structure suffered from bending load. Procedia Engineering, 99, 405–412. https://doi.org/10.1016/j.proeng.2014.12.554
  • Lv, L., Huang, Y., Cui, J., Qian, Y., Ye, F., & Zhao, Y. (2018). Bending properties of three-dimensional honeycomb sandwich structure composites: experiment and finite element method simulation. Textile Research Journal , 88 (17), 2024–2031. https://doi.org/10.1177/0040517517703602
  • Lyu, L., Zhu, L., Cui, J., Guo, J., & Ye, F. (2020). Bending property of honeycombed 3D woven composites with quadrilateral cross section. AATCC Journal of Research, 7(2), 7–12. https://doi.org/10.14504/ajr.7.2.2
  • Ma, Z., Liu, X., Xu, X., Liu, L., Yu, B., Maluk, C., … Song, P. (2021). Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano, 15(7), 11667–11680. https://doi.org/10.1021/acsnano.1c02254
  • Macchi-Tejeda, H., Opatovà, H., & Guilpart, J. (2007). Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part II: Aging of insulating foams. International Journal of Refrigeration, 30(2), 338–344. https://doi.org/10.1016/j.ijrefrig.2006.04.004
  • Manjunath, R. N., Khatkar, V., & Behera, B. K. (2020). Influence of augmented tuning of core architecture in 3D woven sandwich structures on flexural and compression properties of their composites. Advanced Composite Materials, 29(4), 317–333. https://doi.org/10.1080/09243046.2019.1680925
  • Martinez-Val, R., & Perez, E. (2009). Aeronautics and astronautics: Recent progress and future trends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), 2767–2820. https://doi.org/10.1243/09544062JMES1546
  • Masters, I. G., & Evans, K. E. (1996). Models for the elastic deformation of honeycombs. Composite Structures, 35(4), 403–422. https://doi.org/10.1016/S0263-8223(96)00054-2
  • Mazrouei-Sebdani, Z., Begum, H., Schoenwald, S., Horoshenkov, K. V., & Malfait, W. J. (2021). A review on silica aerogel-based materials for acoustic applications. Journal of Non-Crystalline Solids, 562, 120770. https://doi.org/10.1016/j.jnoncrysol.2021.120770
  • Melnikova, R., Ehrmann, A., & Finsterbusch, K. (2014). 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering, 62, 012018. https://doi.org/10.1088/1757-899X/62/1/012018
  • Meng, F. X., Zhou, Q., & Yang, J. L. (2009). Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. International Journal of Crashworthiness, 14(1), 83–97. https://doi.org/10.1080/13588260802517360
  • Meng, L., Qiu, X., Gao, T., Li, Z., & Zhang, W. (2020). An inverse approach to the accurate modelling of 3D-printed sandwich panels with lattice core using beams of variable cross-section. Composite Structures, 247, 112363. https://doi.org/10.1016/j.compstruct.2020.112363
  • Miller, W., Smith, C. W., & Evans, K. E. (2011). Honeycomb cores with enhanced buckling strength. Composite Structures, 93(3), 1072–1077. https://doi.org/10.1016/j.compstruct.2010.09.021
  • Miltz, J., Ramon, O., & Mizrahi, S. (1989). Mechanical behavior of closed cell plastic foams used as cushioning materials. Journal of Applied Polymer Science, 38(2), 281–290. https://doi.org/10.1002/app.1989.070380209
  • Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927–948. https://doi.org/10.1177/0892705711423291
  • Mohammadian, S. K., & Zhang, Y. (2017). Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Applied Thermal Engineering, 118, 375–384. https://doi.org/10.1016/j.applthermaleng.2017.02.121
  • Mohammadiha, O., Beheshti, H., & Aboutalebi, F. H. (2015). Multi-objective optimisation of functionally graded honeycomb filled crash boxes under oblique impact loading. International Journal of Crashworthiness, 20(1), 44–59. https://doi.org/10.1080/13588265.2014.970398
  • Mohan, K., Hon, Y. T., Idapalapati, S., & Seow, H. P. (2005). Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending. Materials Science and Engineering: A, 409(1-2), 292–301. https://doi.org/10.1016/j.msea.2005.06.070
  • Moon, D. Y., Zi, G., Lee, D. H., Kim, B. M., & Hwang, Y. K. (2009). Fatigue behavior of the foam-filled GFRP bridge deck. Composites Part B: Engineering, 40(2), 141–148. https://doi.org/10.1016/j.compositesb.2008.10.002
  • Mukhopadhyay, T., Adhikari, S., & Batou, A. (2019). Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic lattices. International Journal of Mechanical Sciences, 150, 784–806. https://doi.org/10.1016/j.ijmecsci.2017.09.004
  • Murcia Morales, M., Gómez Ramos, M. J., Parrilla Vázquez, P., Díaz Galiano, F. J., García Valverde, M., Gámiz López, V., … Fernández-Alba, A. R. (2020). Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood. The Science of the Total Environment, 710, 136288. https://doi.org/10.1016/j.scitotenv.2019.136288
  • Nechita, P., & Năstac, S. M. (2022). Overview on foam forming cellulose materials for cushioning packaging applications. Polymers, 14(10), 1963. https://doi.org/10.3390/polym14101963
  • Nian, Y., Wan, S., Li, M., & Su, Q. (2020). Crashworthiness design of self-similar graded honeycomb-filled composite circular structures. Construction and Building Materials, 233, 117344. https://doi.org/10.1016/j.conbuildmat.2019.117344
  • Nian, Y., Wan, S., Li, X., Su, Q., & Li, M. (2019). How does bio-inspired graded honeycomb filler affect energy absorption characteristics? Thin-Walled Structures, 144, 106269. https://doi.org/10.1016/j.tws.2019.106269
  • Niutta, C. B., Ciardiello, R., & Tridello, A. (2022). Experimental and numerical investigation of a lattice structure for energy absorption: application to the design of an automotive crash absorber. Polymers, 14(6). https://doi.org/10.3390/polym14061116
  • Noor, A. K., Venneri, S. L., Paul, D. B., & Hopkins, M. A. (2000). Structures technology for future aerospace systems. Computers & Structures, 74(5), 507–519. https://doi.org/10.1016/S0045-7949(99)00067-X
  • Noury, P., Hayman, B., McGeorge, D., & Weitzenböck, J. R. (2002). Lightweight construction for advanced shipbuilding – Recent development. 37th WEGEMT Summer School, 1–23.
  • Novak, N., Duncan, O., Allen, T., Alderson, A., Vesenjak, M., & Ren, Z. (2021). Shear modulus of conventional and auxetic open-cell foam. Mechanics of Materials, 157, 103818. https://doi.org/10.1016/j.mechmat.2021.103818
  • Novak, N., Vesenjak, M., & Ren, Z. (2016). Auxetic cellular materials – A review. Strojniški Vestnik – Journal of Mechanical Engineering, 62(9), 485–493. https://doi.org/10.5545/sv-jme.2016.3656
  • Nur Ainin, F., Azaman, M. D., Abdul Majid, M. S., & Ridzuan, M. J. M. (2023). Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core—a review. In. Functional Composites and Structures, 5(1), 12001. https://doi.org/10.1088/2631-6331/ac9e89
  • Obadimu, S. O., & Kourousis, K. I. (2023). In-plane compression performance of additively manufactured honeycomb structures: a review of influencing factors and optimisation techniques. International Journal of Structural Integrity, 14(3), 337–353. https://doi.org/10.1108/IJSI-10-2022-0130
  • Olabi, A. G., Abbas, Q., Al Makky, A., & Abdelkareem, M. A. (2022). Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 248, 123617. https://doi.org/10.1016/j.energy.2022.123617
  • Omender, Kamble, Z., & Behera, B. K. (2022). Investigation of role of cell geometry on compression behavior of 3-D woven hemp honeycomb composites. Journal of Textile and Apparel, Technology and Management, 2022, 1–13.
  • Othman, A. R., & Barton, D. C. (2008). Failure initiation and propagation characteristics of honeycomb sandwich composites. Composite Structures, 85(2), 126–138. https://doi.org/10.1016/j.compstruct.2007.10.034
  • Ouellet, S., Cronin, D., & Worswick, M. (2006). Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polymer Testing, 25(6), 731–743. https://doi.org/10.1016/j.polymertesting.2006.05.005
  • Palomba, G., Epasto, G., & Crupi, V. (2022). Lightweight sandwich structures for marine applications: A review. Mechanics of Advanced Materials and Structures, 29(26), 4839–4864. https://doi.org/10.1080/15376494.2021.1941448
  • Palomba, G., Hone, T., Taylor, D., & Crupi, V. (2020). Bio-inspired protective structures for marine applications. Bioinspiration & Biomimetics, 15(5), 056016. https://doi.org/10.1088/1748-3190/aba1d1
  • Pan, S. D., Wu, L. Z., Sun, Y. G., Zhou, Z. G., & Qu, J. L. (2006). Longitudinal shear strength and failure process of honeycomb cores. Composite Structures, 72(1), 42–46. https://doi.org/10.1016/j.compstruct.2004.10.011
  • Papa, E., Corigliano, A., & Rizzi, E. (2001). Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: Experimental results. Structural Engineering and Mechanics, 12(2), 169–188. https://doi.org/10.12989/sem.2001.12.2.169
  • Papka, S. D., & Kyriakides, S. (1998a). Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia, 46(8), 2765–2776. https://doi.org/10.1016/S1359-6454(97)00453-9
  • Papka, S. D., & Kyriakides, S. (1998b). In-plane crushing of a polycarbonate honeycomb. International Journal of Solids and Structures, 35(3-4), 239–267. https://doi.org/10.1016/S0020-7683(97)00062-0
  • Papka, S., & Kyriakides, S. (1999). In-plane biaxial crushing of honeycombs—. International Journal of Solids and Structures, 36(29), 4397–4423. https://doi.org/10.1016/S0020-7683(98)00225-X
  • Parthasarathy, J., Starly, B., & Raman, S. (2011). A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes 13 (2), 160–170. https://doi.org/10.1016/j.jmapro.2011.01.004
  • Pedroso, M., de Brito, J., & Silvestre, J. D. (2017). Characterization of eco-efficient acoustic insulation materials (traditional and innovative). Construction and Building Materials, 140, 221–228. https://doi.org/10.1016/j.conbuildmat.2017.02.132
  • Peng, C., & Tran, P. (2020). Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings. Composites Part B: Engineering, 188, 107773. https://doi.org/10.1016/j.compositesb.2020.107773
  • Pickering, K. L., & Le, T. M. (2016). High performance aligned short natural fibre - Epoxy composites. Composites Part B: Engineering, 85, 123–129. https://doi.org/10.1016/j.compositesb.2015.09.046
  • Pilipović, A., Ilinčić, P., Petruša, J., & Domitran, Z. (2020). Influence of polymer composites and memory foam on energy absorption in vehicle application. Polymers, 12(6), 1222. https://doi.org/10.3390/POLYM12061222
  • Pollard, D., Ward, C., Herrmann, G., & Etches, J. (2017). The manufacture of honeycomb cores using fused deposition modeling. Advanced Manufacturing: Polymer & Composites Science, 3(1), 21–31. https://doi.org/10.1080/20550340.2017.1306337
  • Pourriahi, V., Heidari-Rarani, M., & Torabpour Isfahani, A. (2022). Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models. Journal of Sandwich Structures & Materials, 24(2), 1449–1469. https://doi.org/10.1177/10996362211053633
  • Prall, D., & Lakes, R. S. (1997). Properties of a chiral honeycomb with a poisson’s ratio of -1. International Journal of Mechanical Sciences, 39(3), 305–314. https://doi.org/10.1016/S0020-7403(96)00025-2
  • Prawoto, Y. (2012). Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Computational Materials Science, 58, 140–153. https://doi.org/10.1016/j.commatsci.2012.02.012
  • Price, T., Dalley, G., McCullough, P., & Choquette, L. (1997). Handbook: Manufacturing advanced composite components for airframes. Federal Aviation Administration Washington dc Office of Aviation Research.
  • Qi, C., Jiang, F., & Yang, S. (2021). Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B: Engineering, 227, 109393. https://doi.org/10.1016/j.compositesb.2021.109393
  • Qi, C., Jiang, F., Yu, C., & Yang, S. (2019). In-plane crushing response of tetra-chiral honeycombs. International Journal of Impact Engineering, 130, 247–265. https://doi.org/10.1016/j.ijimpeng.2019.04.019
  • Qi, J., Li, C., Tie, Y., Zheng, Y., & Duan, Y. (2021). Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading. Materials & Design, 207, 109837. https://doi.org/10.1016/j.matdes.2021.109837
  • Qiao, J. X., & Chen, C. Q. (2015). Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs. International Journal of Impact Engineering, 83, 47–58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
  • Radlof, W., Benz, C., & Sander, M. (2021). Numerical and experimental investigations of additively manufactured lattice structures under quasi-static compression loading. Material Design & Processing Communications, 3(3) https://doi.org/10.1002/mdp2.164
  • Rahul Rollakanti, C. S. R., Prasad, C., Professor, S., & Pavan Kumar, M. (2018). Experimental investigations and cost effectiveness of preformed foam cellular concrete blocks in construction industry bacterial concrete. Cellular Concrete Blocks in Construction Industry. https://doi.org/10.37896/JXAT12.04/1234
  • Rao, S. S., Viswatej, K., Adinarayana, S., & Design, M.-T. M. (2016). Design and sensitivities analysis on automotive bumper beam subjected to low velocity impact. International Journal of Engineering Trends and Technology, 37(2), 110–121. http://www.ijettjournal.org https://doi.org/10.14445/22315381/IJETT-V37P218
  • Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: A review. Smart Materials and Structures, 27(2), 23001. https://doi.org/10.1088/1361-665X/aaa61c
  • Reyno, T., Marsden, C., & Wowk, D. (2018). Surface damage evaluation of honeycomb sandwich aircraft panels using 3D scanning technology. NDT & E International, 97, 11–19. https://doi.org/10.1016/j.ndteint.2018.03.007
  • Riccio, A., Raimondo, A., Saputo, S., Sellitto, A., Battaglia, M., & Petrone, G. (2018). A numerical study on the impact behaviour of natural fibres made honeycomb cores. Composite Structures, 202, 909–916. https://doi.org/10.1016/j.compstruct.2018.04.062
  • Rizzi, E., Papa, E., & Corigliano, A. (2000). Mechanical behavior of a syntactic foam: Experiments and modeling. International Journal of Solids and Structures, 37(40), 5773–5794. https://doi.org/10.1016/S0020-7683(99)00264-4
  • Rodriguez-Ramirez, J. D D., Castanie, B., & Bouvet, C. (2018). Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core: Application to insert sizing. Composite Structures, 193, 121–139. https://doi.org/10.1016/j.compstruct.2018.03.076
  • Rostam, D., Ali, T., & Atrushi, D. (2013). Economical and Structural Feasibility of Concrete Cellular and Solid Blocks in Kurdistan Region. ARO, the Scientific Journal of Koya University, 4(1), 1–7. https://doi.org/10.14500/ARO.10113
  • Roy, R., Park, S. J., Kweon, J. H., & Choi, J. H. (2014). Characterization of Nomex honeycomb core constituent material mechanical properties. Composite Structures, 117(1), 255–266. https://doi.org/10.1016/j.compstruct.2014.06.033
  • Ruan, D., Lu, G., Chen, F. L., & Siores, E. (2002). Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures, 57(1-4), 331–336. https://doi.org/10.1016/S0263-8223(02)00100-9
  • Ruan, D., Lu, G., Wang, B., & Yu, T. X. (2003). In-plane dynamic crushing of honeycombs - A finite element study. International Journal of Impact Engineering, 28(2), 161–182. https://doi.org/10.1016/S0734-743X(02)00056-8
  • Ruiz-Herrero, J. L., Velasco Nieto, D., López-Gil, A., Arranz, A., Fernández, A., Lorenzana, A., … Rodríguez-Pérez, M. Á. (2016). Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Construction and Building Materials, 104, 298–310. https://doi.org/10.1016/j.conbuildmat.2015.12.005
  • Rusch, K. C. (1969). Load–compression behavior of flexible foams. Journal of Applied Polymer Science, 13(11), 2297–2311. https://doi.org/10.1002/app.1969.070131106
  • Russell, B. P., Deshpande, V. S., & Wadley, H. N. G. (2008). Quasistatic deformation and failure modes of composite square honeycombs. Journal of Mechanics of Materials and Structures, 3(7), 1315–1340. https://doi.org/10.2140/jomms.2008.3.1315
  • Ryan, S., Schaefer, F., Destefanis, R., & Lambert, M. (2008). A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures. Advances in Space Research, 41(7), 1152–1166. https://doi.org/10.1016/j.asr.2007.02.032
  • Sahib, M. M., & Kovács, G. (2023). Elaboration of a multi-objective optimization method for high-speed train floors using composite sandwich structures. Applied Sciences (Sciences, 13(6), 3876. https://doi.org/10.3390/app13063876
  • Şakar, G., & Bolat, F. Ç. (2015). The free vibration analysis of honeycomb sandwich beam using 3D and continuum model. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(6), 1077–1081.
  • Saleem, M. A., Zafar, M. N., Saleem, M. M., & Xia, J. (2021). Recent developments in the prefabricated bridge deck systems. Case Studies in Construction Materials, 15, e00750. https://doi.org/10.1016/j.cscm.2021.e00750
  • Salvo, L., Martin, G., Suard, M., Marmottant, A., Dendievel, R., & Blandin, J. J. (2014). Processing and structures of solids foams. Comptes Rendus Physique, 15(8-9), 662–673. https://doi.org/10.1016/j.crhy.2014.10.006
  • Scarpa, F., Blain, S., Lew, T., Perrott, D., Ruzzene, M., & Yates, J. R. (2007). Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A: Applied Science and Manufacturing, 38(2), 280–289. https://doi.org/10.1016/j.compositesa.2006.04.007
  • Scarpa, F., Ciffo, L. G., & Yates, J. R. (2004). Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 13(1), 49–56. https://doi.org/10.1088/0964-1726/13/1/006
  • Scarpa, F., Smith, F. C., Chambers, B., & Burriesci, G. (2003). Mechanical and electromagnetic behaviour of auxetic honeycomb structures. The Aeronautical Journal, 107(1069), 175–183. https://doi.org/10.1017/S000192400001191X
  • Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46(1), 187–210. https://doi.org/10.1146/annurev-matsci-070115-031624
  • Schwaber, D. M. (1973). Impact behavior of polymeric foams: A review. Polymer-Plastics Technology and Engineering, 2(2), 231–249. https://doi.org/10.1080/03602557308545019
  • Schwartz, D. S., Shih, D. S., Evans, A. G., & Wadley, H. N. G. (2015). Porous and cellular materials for structural applications. http://www.mrs.org/
  • Seemann, R., & Krause, D. (2017). Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level. Composite Structures , 159, 702–718. https://doi.org/10.1016/j.compstruct.2016.09.071
  • Seharing, A., Azman, A. H., & Abdullah, S. (2020). A review on integration of lightweight gradient lattice structures in additive manufacturing parts. Advances in Mechanical Engineering, 12 (6), 168781402091695. https://doi.org/10.1177/1687814020916951
  • Shahdin, A., Mezeix, L., Bouvet, C., Morlier, J., & Gourinat, Y. (2009). Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams. Composite Structures, 90(4), 404–412. https://doi.org/10.1016/j.compstruct.2009.04.003
  • Shao, Y., Li, J., Li, Y., Wang, H., Zhang, Q., & Kaner, R. B. (2017). Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 4(6), 1145–1150. https://doi.org/10.1039/C7MH00441A
  • Sharma, N., Gibson, R. F., & Ayorinde, E. O. (2006). Fatigue of foam and honeycomb core composite sandwich structures: A tutorial. Journal of Sandwich Structures & Materials, 8(4), 263–319. https://doi.org/10.1177/1099636206063337
  • Shaw, M. C., & Sata, T. (1966). The plastic behavior of cellular materials. International Journal of Mechanical Sciences, 8(7), 469–478. https://doi.org/10.1016/0020-7403(66)90019-1
  • Shi, S., Sun, Z., Hu, X., & Chen, H. (2014). Flexural strength and energy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid. Thin-Walled Structures, 84, 416–422. https://doi.org/10.1016/j.tws.2014.07.015
  • Shifa, M., Tariq, F., & Chandio, A. D. (2021). Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications. Journal of Sandwich Structures & Materials, 23(1), 222–240. https://doi.org/10.1177/1099636219830783
  • Shin, K. B., Lee, J. Y., & Cho, S. H. (2008). An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus. Composite Structures, 84(3), 228–240. https://doi.org/10.1016/j.compstruct.2007.08.002
  • Shuaeib, F. M., Hamouda, A. M. S., Hamdan, M. M., Radin Umar, R. S., & Hashmi, M. S. J. (2002). Motorcycle helmet: Part III. Journal of Materials Processing Technology, 123(3), 432–439. https://doi.org/10.1016/S0924-0136(02)00046-8
  • Siivola, J., Minakuchi, S., & Takeda, N. (2017). Dimpling monitoring and assessment of satellite honeycomb sandwich structures by distributed fiber optic sensors. Procedia Engineering, 188, 186–193. https://doi.org/10.1016/j.proeng.2017.04.473
  • Silva, M. J., Hayes, W. C., & Gibson, L. J. (1995). The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. International Journal of Mechanical Sciences, 37(11), 1161–1177. https://doi.org/10.1016/0020-7403(94)00018-F
  • Singh, O., & Behera, B. K. (2023). Review: a developmental perspective on protective helmets. Journal of Materials Science, 58(15), 6444–6473. https://doi.org/10.1007/s10853-023-08441-3
  • Singh, O., Sharma, J., Singh, P., & Behera, B. K. (2023). Geometrical modeling and experimental validation of 3D woven honeycomb fabric for lightweight aircrew helmet liner manufacturing. The Journal of the Textile Institute, 1–12. https://doi.org/10.1080/00405000.2023.2272330
  • Smeets, B. J. R., Fagan, E. M., Matthews, K., Telford, R., Murray, B. R., Pavlov, L., … Goggins, J. (2021). Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications. Composites Part B: Engineering, 212, 108691. https://doi.org/10.1016/j.compositesb.2021.108691
  • Smith, C. W., Grima, J. N., & Evans, K. E. (2000). Novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 48(17), 4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X
  • Soorbaghi, F. P., Isanejad, M., Salatin, S., Ghorbani, M., Jafari, S., & Derakhshankhah, H. (2019). Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 111, 964–975. https://doi.org/10.1016/j.biopha.2019.01.014
  • Staaf, L. G. H., Lundgren, P., & Enoksson, P. (2014). Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy, 9, 128–141. https://doi.org/10.1016/j.nanoen.2014.06.028
  • Stazi, F., Urlietti, C., Di Perna, C., Chiappini, G., Rossi, M., & Tittarelli, F. (2019). Thermal and mechanical optimization of nano-foams for sprayed insulation. Construction and Building Materials, 201, 828–841. https://doi.org/10.1016/j.conbuildmat.2018.12.177
  • Stocchi, A., Colabella, L., Cisilino, A., & Álvarez, V. (2014). Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Materials & Design, 55, 394–403. https://doi.org/10.1016/j.matdes.2013.09.054
  • Styles, M., Compston, P., & Kalyanasundaram, S. (2007). The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Composite Structures, 80(4), 532–538. https://doi.org/10.1016/j.compstruct.2006.07.002
  • Su, B., Zhou, Z., Wang, Z., Li, Z., & Shu, X. (2014). Effect of defects on creep behavior of cellular materials. Materials Letters, 136, 37–40. https://doi.org/10.1016/j.matlet.2014.07.185
  • Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y. (2018). 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114–121. https://doi.org/10.1016/j.compositesa.2018.07.029
  • Sun, G., Chen, D., Wang, H., Hazell, P. J., & Li, Q. (2018). High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations. International Journal of Impact Engineering, 122, 119–136. https://doi.org/10.1016/j.ijimpeng.2018.08.007
  • Sun, G., Huo, X., Wang, H., Hazell, P. J., & Li, Q. (2021). On the structural parameters of honeycomb-core sandwich panels against low-velocity impact. Composites Part B: Engineering, 216, 108881. https://doi.org/10.1016/j.compositesb.2021.108881
  • Sun, J., Gao, H., Scarpa, F., Lira, C., Liu, Y., & Leng, J. (2014). Active inflatable auxetic honeycomb structural concept for morphing wingtips. Smart Materials and Structures, 23(12), 125023. https://doi.org/10.1088/0964-1726/23/12/125023
  • Sun, M., Wowk, D., Mechefske, C., Alexander, E., & Kim, I. Y. (2022). Surface and honeycomb core damage in adhesively bonded aluminum sandwich panels subjected to low-velocity impact. Composites Part B: Engineering, 230(July 2021), 109506. https://doi.org/10.1016/j.compositesb.2021.109506
  • Sun, M., Wowk, D., Mechefske, C., & Kim, I. Y. (2019). An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact. Composites Part B: Engineering, 168, 121–128. https://doi.org/10.1016/j.compositesb.2018.12.071
  • Sun, Y., Amirrasouli, B., Razavi, S. B., Li, Q. M., Lowe, T., & Withers, P. J. (2016). The variation in elastic modulus throughout the compression of foam materials. Acta Materialia, 110, 161–174. https://doi.org/10.1016/j.actamat.2016.03.003
  • Takeda, N., Minakuchi, S., & Okabe, Y. (2007). Smart Composite Sandwich Structures for Future Aerospace Application -Damage Detection and Suppression-: a Review. Journal of Solid Mechanics and Materials Engineering, 1(1), 3–17. https://doi.org/10.1299/jmmp.1.3
  • Takenaka, K., & Koji, S. (1991). Woven fabric having multi-layer structure and composite material comprising the woven fabric (Patent 5,021,283). In U.S. Patent and Trademark Office (5,021,283).
  • Tamakuwala, V. R. (2021). Manufacturing of fiber reinforced polymer by using VARTM process: A review. Materials Today: Proceedings, 44, 987–993. https://doi.org/10.1016/j.matpr.2020.11.102
  • Tan, H. L., He, Z. C., Li, K. X., Li, E., Cheng, A. G., & Xu, B. (2019). In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio. Composite Structures, 229, 111415. https://doi.org/10.1016/j.compstruct.2019.111415
  • Tao, Y., Li, W., Cheng, T., Wang, Z., Chen, L., Pei, Y., & Fang, D. (2021). Out-of-plane dynamic crushing behavior of joint-based hierarchical honeycombs. Journal of Sandwich Structures & Materials, 23(7), 2832–2855. https://doi.org/10.1177/1099636220909783
  • Tao, Y., Li, W., Wei, K., Duan, S., Wen, W., Chen, L., … Fang, D. (2019). Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Composites Part B: Engineering, 176, 107219. https://doi.org/10.1016/j.compositesb.2019.107219
  • Tao, Y., Ren, M., Zhang, H., & Peijs, T. (2021). Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today , 24, 101141. https://doi.org/10.1016/j.apmt.2021.101141
  • Tekog˜lu, C., Gibson, L. J., Pardoen, T., & Onck, P. R. (2011). Size effects in foams: Experiments and modeling. Progress in Materials Science, 56(2), 109–138. https://doi.org/10.1016/j.pmatsci.2010.06.001
  • Tian, X., & Zhou, K. (2020). 3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 12(14), 7416–7432. https://doi.org/10.1039/d0nr00291g
  • Tomin, M., & Kmetty, Á. (2022). Polymer foams as advanced energy absorbing materials for sports applications—A review. Journal of Applied Polymer Science, 139(9), 51714. https://doi.org/10.1002/app.51714
  • Torabi, K., Afshari, H., & Aboutalebi, F. H. (2019). Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. Journal of Sandwich Structures & Materials, 21(8), 2887–2920. https://doi.org/10.1177/1099636217728746
  • Toribio, M. G., & Spearing, S. M. (2001). Compressive response of notched glass-fiber epoxy/honeycomb sandwich panels. Composites Part A: Applied Science and Manufacturing, 32(6), 859–870. https://doi.org/10.1016/S1359-835X(00)00150-0
  • Tornabene, F., Brischetto, S., Fantuzzi, N., & Viola, E. (2015). Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels. Composites Part B: Engineering, 81, 231–250. https://doi.org/10.1016/j.compositesb.2015.07.015
  • Torre, L., & Kenny, J. M. (2000). Impact testing and simulation of composite sandwich structures for civil transportation. Composite Structures, 50(3), 257–267. https://doi.org/10.1016/S0263-8223(00)00101-X
  • Torrejon, V. M., Song, J., Yu, Z., & Hang, S. (2022). Gelatin-based cellular solids: Fabrication, structure and properties. Journal of Cellular Plastics, 58 (5), 797–858. https://doi.org/10.1177/0021955X221087602
  • Torun, A. R., Mountasir, A., Hoffmann, G., & Cherif, C. (2013). Production principles and technological development of novel woven spacer preforms and integrated stiffener structures. Applied Composite Materials, 20(3), 275–285. https://doi.org/10.1007/s10443-012-9281-8
  • Tran, P., Ngo, T. D., & Mendis, P. (2014). Bio-inspired composite structures subjected to underwater impulsive loading. Computational Materials Science, 82, 134–139. https://doi.org/10.1016/j.commatsci.2013.09.033
  • Tripathi, L., & Behera, B. K. (2021). Review: 3D woven honeycomb composites. Journal of Materials Science, (56 (28), 15609–15652. https://doi.org/10.1007/s10853-021-06302-5
  • Tripathi, L., & Behera, B. K. (2022). Flatwise compression behavior of 3D woven honeycomb composites. Journal of Industrial Textiles, 52, 152808372211254. https://doi.org/10.1177/15280837221125483
  • Tripathi, L., & Behera, B. K. (2023a). Comparative analysis of the mechanical performance of 3D woven honeycomb composites produced in warp and weft directions. The Journal of the Textile Institute, 1–12. https://doi.org/10.1080/00405000.2023.2191297
  • Tripathi, L., & Behera, B. K. (2023b). Influence of different structural parameters of 3D woven honeycomb composites on three-point bending behavior. The Journal of the Textile Institute, 1–16. https://doi.org/10.1080/00405000.2023.2201909
  • Tripathi, L., Chowdhury, S., & Behera, B. K. (2023). Low-velocity impact behavior of 3D woven structural honeycomb composite. Mechanics of Advanced Materials and Structures, 1–16. https://doi.org/10.1080/15376494.2023.2199415
  • Tripathi, L., Neje, G., & Behera, B. K. (2020). Geometrical modeling of 3D woven honeycomb fabric for manufacturing of lightweight sandwich composite material. Journal of Industrial Textiles, 51(3_suppl), 4372S–4389S. https://doi.org/10.1177/1528083720931472
  • Uğur, L., Duzcukoglu, H., Sahin, O. S., & Akkuş, H. (2020). Investigation of impact force on aluminium honeycomb structures by finite element analysis. Journal of Sandwich Structures & Materials, 22(1), 87–103. https://doi.org/10.1177/1099636217733235
  • Ukken, E. T., & Beena, B. R. (2017). Review on structural performance of honeycomb sandwich panel. International Research Journal of Engineering and Technology (IRJET), 4(6), 2558–2562.
  • Ullah, I., Brandt, M., & Feih, S. (2016). Failure and energy absorption characteristics of advanced 3D truss core structures. Materials & Design, 92, 937–948. https://doi.org/10.1016/j.matdes.2015.12.058
  • Ullah, I., Elambasseril, J., Brandt, M., & Feih, S. (2014). Performance of bio-inspired Kagome truss core structures under compression and shear loading. Composite Structures, 118(1), 294–302. https://doi.org/10.1016/j.compstruct.2014.07.036
  • Vijaya Ramnath, B., Alagarraja, K., & Elanchezhian, C. (2019). Review on sandwich composite and their applications. Materials Today: Proceedings, 16, 859–864. https://doi.org/10.1016/j.matpr.2019.05.169
  • Vishwanadha, C. S., Özdemir, A. E., & Zafer, B. (2021). Prediction of automotive HVAC duct acoustic properties via innovative simulation techniques. International Journal of Automotive Engineering and Technologies, 10(1), 1–7. https://doi.org/10.18245/ijaet.758142
  • Vitale, J. P., Francucci, G., Xiong, J., & Stocchi, A. (2017). Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Composites Part A: Applied Science and Manufacturing, 94, 217–225. https://doi.org/10.1016/j.compositesa.2016.12.021
  • Wadley, H. N. G. (2006). Multifunctional periodic cellular metals. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 364(1838), 31–68. https://doi.org/10.1098/rsta.2005.1697
  • Wadley, H. N. G., Fleck, N. A., & Evans, A. G. (2003). Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 63(16), 2331–2343. https://doi.org/10.1016/S0266-3538(03)00266-5
  • Wahl, L., Maas, S., Le Waldmann, D., Zürbes, A., & Frè Res, P. (2012). Shear stresses in honeycomb sandwich plates: Analytical solution, finite element method and experimental verification. Journal of Sandwich Structures & Materials, 14(4), 449–468. https://doi.org/10.1177/1099636212444655
  • Wahl, L., Maas, S., Waldmann, D., Zürbes, A., & Frères, P. (2014). Fatigue in the core of aluminum honeycomb panels: Lifetime prediction compared with fatigue tests. International Journal of Damage Mechanics, 23(5), 661–683. https://doi.org/10.1177/1056789513505892
  • Wahrhaftig, A., Ribeiro, H., Nascimento, A., & Filho, M. (2016). Analysis of a new composite material for watercraft manufacturing. Journal of Marine Science and Application, 15(3), 336–342. https://doi.org/10.1007/s11804-016-1364-8
  • Wan, H., Ohtaki, H., Kotosaka, S., & Hu, G. (2004). A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. European Journal of Mechanics - A/Solids, 23(1), 95–106. https://doi.org/10.1016/j.euromechsol.2003.10.006
  • Wang, A. J., & McDowell, D. L. (2004). In-plane stiffness and yield strength of periodic metal honeycombs. Journal of Engineering Materials and Technology, 126(2), 137–156. https://doi.org/10.1115/1.1646165
  • Wang, D. (2009). Impact behavior and energy absorption of paper honeycomb sandwich panels. International Journal of Impact Engineering, 36(1), 110–114. https://doi.org/10.1016/j.ijimpeng.2008.03.002
  • Wang, H., Xiu, X., Wang, Y., Xue, Q., Ju, W., Che, W., … Hu, J. (2020). Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs. Composites Part B: Engineering, 202, 108378. https://doi.org/10.1016/j.compositesb.2020.108378
  • Wang, J., Cao, Y., & Zhu, S. P. (2020). Influence of the geometric parameters on the densification onset strain of double-walled honeycomb aluminum under out-of-plane compression. Advances in Materials Science and Engineering, 2020, 1–7. https://doi.org/10.1155/2020/6012067
  • Wang, Q., Li, Z., Zhang, Y., Cui, S., Yang, Z., & Lu, Z. (2020). Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability. Composites Part B: Engineering, 202, 108379. https://doi.org/10.1016/j.compositesb.2020.108379
  • Wang, W., Luo, H., Fu, J., Wang, H., Yu, C., Liu, G., … Wu, S. (2020). Comparative application analysis and test verification on equivalent modeling theories of honeycomb sandwich panels for satellite solar arrays. Advanced Composites Letters, 29, 096369352096312. https://doi.org/10.1177/0963693520963127
  • Wang, X., Zhang, L., Song, B., Zhang, Z., Zhang, J., Fan, J., … Shi, Y. (2022). Tunable mechanical performance of additively manufactured plate lattice metamaterials with half-open-cell topology. Composite Structures, 300, 116172. https://doi.org/10.1016/j.compstruct.2022.116172
  • Wang, Z. (2019). Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering , 166, 731–741. https://doi.org/10.1016/j.compositesb.2019.02.011
  • Wang, Z., Li, Z., & Xiong, W. (2019). Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet. Composites Part B: Engineering, 164, 280–286. https://doi.org/10.1016/j.compositesb.2018.10.077
  • Wang, Z., Liu, J., Lu, Z., & Hui, D. (2017). Mechanical behavior of composited structure filled with tandem honeycombs. Composites Part B: Engineering, 114, 128–138. https://doi.org/10.1016/j.compositesb.2017.01.018
  • Wei, L., Zhao, X., Yu, Q., & Zhu, G. (2020). A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin-Walled Structures, 149, 106623. https://doi.org/10.1016/j.tws.2020.106623
  • Wei, X., Li, D., & Xiong, J. (2019). Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach. Composites Science and Technology, 184, 107878. https://doi.org/10.1016/j.compscitech.2019.107878
  • Wei, X., Wang, Y., Xue, P., Zhang, T., Rouis, A., Xiao, W., & Xiong, J. (2022). Carbon fiber composite honeycomb structures and the application for satellite antenna reflector with high precision. Advances in Astronautics Science and Technology, 5(4), 423–441. https://doi.org/10.1007/s42423-022-00133-5
  • Wei, XYu., Xiong, J., Wang, J., & Xu, W. (2020). New advances in fiber-reinforced composite honeycomb materials. Science China Technological Sciences, 63(8), 1348–1370. https://doi.org/10.1007/s11431-020-1650-9
  • Wicks, N., & Hutchinson, J. W. (2004). Sandwich plates actuated by a Kagome planar truss. Journal of Applied Mechanics, 71(5), 652–662. https://doi.org/10.1115/1.1778720
  • Wierzbicki, T. (1983). Crushing analysis of metal honeycombs. International Journal of Impact Engineering, 1(2), 157–174. https://doi.org/10.1016/0734-743X(83)90004-0
  • Wierzbicki, T., & Abramowicz, W. (1983). On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics, 50(4a), 727–734. https://doi.org/10.1115/1.3167137
  • Wouterson, E. M., Boey, F. Y. C., Hu, X., & Wong, S.-C. (2005). Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Composites Science and Technolog, 65(11-12), 1840–1850. https://doi.org/10.1016/j.compscitech.2005.03.012
  • Wu, E., & Jiang, W. S. (1997). Axial crush of metallic honeycombs. International Journal of Impact Engineering, 19(5-6), 439–456. https://doi.org/10.1016/S0734-743X(97)00004-3
  • Wu, H., Zhang, X., & Liu, Y. (2020). In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson’s ratio. Thin-Walled Structures, 151, 106767. https://doi.org/10.1016/j.tws.2020.106767
  • Wu, Y., Liu, Q., Fu, J., Li, Q., & Hui, D. (2017). Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels. Composites Part B: Engineering, 121, 122–133. https://doi.org/10.1016/j.compositesb.2017.03.030
  • Xia, P., Liu, Q., Fu, H., Yu, Y., Wang, L., Wang, Q., … Zhao, F. (2023). Mechanical properties and energy absorption of 3D printed double-layered helix honeycomb under in-plane compression. Composite Structures, 315, 116982. https://doi.org/10.1016/j.compstruct.2023.116982
  • Xiang, J., & Du, J. (2017). Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Materials Science and Engineering: A, 696, 283–289. https://doi.org/10.1016/j.msea.2017.04.044
  • Taylor, L. W., Tsai, L.-J. & Xiaogang Chen, (2011). An overview on fabrication of three-dimensional woven textile preforms for composites. Textile Research Journal, 81(9), 932–944. https://doi.org/10.1177/0040517510392471
  • Xiaogang, C., Ying, S., & Gong, X. (2008). Design, manufacture, and experimental analysis of 3D honeycomb textile composites part i: design and manufacture. Textile Research Journal, 78(9), 771–781. https://doi.org/10.1177/0040517507087855
  • Xie, S., & Zhou, H. (2014). Impact characteristics of a composite energy absorbing bearing structure for railway vehicles. Composites Part B: Engineering, 67, 455–463. https://doi.org/10.1016/j.compositesb.2014.08.019
  • Xing, Y., Yang, S., Lu, S., An, Y., Zhao, E., & Zhai, J. (2021). Energy absorption and optimization of bi-directional corrugated honeycomb aluminum. Composites Part B: Engineering, 219, 108914. https://doi.org/10.1016/j.compositesb.2021.108914
  • Xiong, J., Zhang, M., Stocchi, A., Hu, H., Ma, L., Wu, L., & Zhang, Z. (2014). Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression. Composites Part B: Engineering, 60, 350–358. https://doi.org/10.1016/j.compositesb.2013.12.049
  • Xu, M., Xu, Z., Zhang, Z., Lei, H., Bai, Y., & Fang, D. (2019). Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. International Journal of Mechanical Sciences, 159, 43–57. https://doi.org/10.1016/j.ijmecsci.2019.05.044
  • Xu, S., Beynon, J. H., Ruan, D., & Lu, G. (2012). Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Composite Structures, 94(8), 2326–2336. https://doi.org/10.1016/j.compstruct.2012.02.024
  • Yamashita, M., & Gotoh, M. (2005). Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment. International Journal of Impact Engineering, 32(1-4), 618–630. https://doi.org/10.1016/j.ijimpeng.2004.09.001
  • Yang, C., Zhang, Q., Zhang, W., Xia, M., Yan, K., Lu, J., & Wu, G. (2021). High thermal insulation and compressive strength polypropylene microcellular foams with honeycomb structure. Polymer Degradation and Stability, 183, 109406. https://doi.org/10.1016/j.polymdegradstab.2020.109406
  • Yang, L., Harrysson, O., West, H., & Cormier, D. (2015). Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. International Journal of Solids and Structures, 69-70, 475–490. https://doi.org/10.1016/j.ijsolstr.2015.05.005
  • Yang, W., Li, Z., Shi, W., Xie, B.-H., & Yang, M. (2004). Review on auxetic materials. Journal of Materials Science, 39(10), 3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0
  • Yang, X., Sun, Y., Yang, J., & Pan, Q. (2018). Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 125, 1–11. https://doi.org/10.1016/j.tws.2018.01.014
  • Yang, X., Zhang, Z., Xing, Y., Yang, J., & Sun, Y. (2017). A new theoretical model of aircraft arresting system based on polymeric foam material. Aerospace Science and Technology, 66, 284–293. https://doi.org/10.1016/j.ast.2017.03.019
  • Yap, Y. L., & Yeong, W. Y. (2015). Shape recovery effect of 3D printed polymeric honeycomb: This paper studies the elastic behaviour of different honeycomb structures produced by PolyJet technology. Virtual and Physical Prototyping, 10(2), 91–99. https://doi.org/10.1080/17452759.2015.1060350
  • Yasuda, H., Tachi, T., Lee, M., & Yang, J. (2017). Origami-based tunable truss structures for non-volatile mechanical memory operation. Nature Communications, 8(1), 962. https://doi.org/10.1038/s41467-017-00670-w
  • Yasui, Y. (2000). Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members. International Journal of Impact Engineering, 24(6-7), 659–671. https://doi.org/10.1016/S0734-743X(99)00174-8
  • Yin, S., Wang, H., Hu, J., Wu, Y., Wang, Y., Wu, S., & Xu, J. (2019). Fabrication and anti-crushing performance of hollow honeytubes. Composites Part B: Engineering, 179, 107522. https://doi.org/10.1016/j.compositesb.2019.107522
  • Youssef, A. M., & El-Sayed, S. M. (2018). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, 193, 19–27. https://doi.org/10.1016/j.carbpol.2018.03.088
  • Yu, B., Han, B., Su, P. B., Ni, C. Y., Zhang, Q. C., & Lu, T. J. (2016). Graded square honeycomb as sandwich core for enhanced mechanical performance. Materials & Design, 89, 642–652. https://doi.org/10.1016/j.matdes.2015.09.154
  • Yuan, W., Song, H., & Huang, C. (2016). Failure maps and optimal design of metallic sandwich panels with truss cores subjected to thermal loading. International Journal of Mechanical Sciences, 115-116, 56–67. https://doi.org/10.1016/j.ijmecsci.2016.06.006
  • Yuan, Y., Liu, L., Yang, M., Zhang, T., Xu, F., Lin, Z., … Li, Y. (2017). Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 123, 223–232. https://doi.org/10.1016/j.carbon.2017.07.060
  • Zaini, E. S., Azaman, M. D., Jamali, M. S., & Ismail, K. A. (2020). Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. Journal of Sandwich Structures & Materials, 22(3), 525–550. https://doi.org/10.1177/1099636218758589
  • Zampaloni, M., Pourboghrat, F., Yankovich, S. A., Rodgers, B. N., Moore, J., Drzal, L. T., … Misra, M. (2007). Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 38(6), 1569–1580. https://doi.org/10.1016/j.compositesa.2007.01.001
  • Zarei, H., & Kröger, M. (2008). Optimum honeycomb filled crash absorber design. Materials & Design, 29(1), 193–204. https://doi.org/10.1016/j.matdes.2006.10.013
  • Zarei Mahmoudabadi, M., & Sadighi, M. (2011). A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb—Theoretical and experimental. Materials Science and Engineering: A, 530(1), 333–343. https://doi.org/10.1016/j.msea.2011.09.093
  • Zhang, D., Fei, Q., Jiang, D., & Li, Y. (2018). Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Composite Structures, 192, 289–299. https://doi.org/10.1016/j.compstruct.2018.02.082
  • Zhang, D., Fei, Q., Liu, J., Jiang, D., & Li, Y. (2020). Crushing of vertex-based hierarchical honeycombs with triangular substructures. Thin-Walled Structures, 146, 106436. https://doi.org/10.1016/j.tws.2019.106436
  • Zhang, J., Lu, G., & You, Z. (2020). Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Composites Part B: Engineering , 201, 108340. https://doi.org/10.1016/j.compositesb.2020.108340
  • Zhang, Q., & Liu, H. (2020). On the dynamic response of porous functionally graded microbeam under moving load. International Journal of Engineering Science, 153, 103317. https://doi.org/10.1016/j.ijengsci.2020.103317
  • Zhang, W., Yin, S., Yu, T. X., & Xu, J. (2019). Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineering, 125, 163–172. https://doi.org/10.1016/j.ijimpeng.2018.11.014
  • Zhang, X., Wang, R., Liu, J., Li, X., & Jia, G. (2018). A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact. Aerospace Science and Technology, 75, 254–260. https://doi.org/10.1016/j.ast.2017.12.034
  • Zhang, X., & Zhang, H. (2013). Energy absorption of multi-cell stub columns under axial compression. Thin-Walled Structures, 68, 156–163. https://doi.org/10.1016/j.tws.2013.03.014
  • Zhang, X., & Zhang, H. (2014). Axial crushing of circular multi-cell columns. International Journal of Impact Engineering, 65, 110–125. https://doi.org/10.1016/j.ijimpeng.2013.12.002
  • Zhao, C., Zheng, T., Zhao, W., Yuan, L., & Xu, Y. (2022). Research on bearing capacity of honeycomb plate box-type hollow roof structure. Construction and Building Materials, 347, 128596. https://doi.org/10.1016/j.conbuildmat.2022.128596
  • Zhao, Z., & Chen, X. (2020). Effect of cyclic softening and stress relaxation on fatigue behavior of 2.25Cr1Mo0.25V steel under strain-controlled fatigue-creep interaction at 728 K. International Journal of Fatigue, 140, 105848. https://doi.org/10.1016/j.ijfatigue.2020.105848
  • Zheng, L., Wu, D., Zhou, A., Pan, B., Wang, Y., & Wang, J. (2014). Experimental and numerical study on heat transfer characteristics of metallic honeycomb core structure in transient thermal shock environments. International Journal of Thermophysics, 35(8), 1557–1576. https://doi.org/10.1007/s10765-014-1706-1
  • Zhong, W., Li, F., Zhang, Z., Song, L., & Li, Z. (2001). Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering: A, 301(2), 125–130. https://doi.org/10.1016/S0921-5093(00)01810-4
  • Zhou, H., Guo, R., Liu, R., & Jiang, W. (2022). Dynamic response of composite sandwich structures with the honeycomb-foam hybrid core subjected to underwater shock waves: Numerical simulations. Journal of Composite Materials, 56(6), 911–928. https://doi.org/10.1177/00219983211066386
  • Zhu, H. X., Hobdell, J. R., & Windle, A. H. (2000). Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater, 48, 4893–4900. www.elsevier.com/locate/actamat
  • Zhu, Y., Zeng, Z., Wang, Z.-P., Poh, L. H., & Shao, Y. (2019). Hierarchical hexachiral auxetics for large elasto-plastic deformation. Materials Research Express, 6(8), 085701. https://doi.org/10.1088/2053-1591/ab1a22
  • Zinno, A., Fusco, E., Prota, A., & Manfredi, G. (2010). Multiscale approach for the design of composite sandwich structures for train application. Composite Structures, 92(9), 2208–2219. https://doi.org/10.1016/j.compstruct.2009.08.044
  • Zou, Z., Reid, S. R., Tan, P. J., Li, S., & Harrigan, J. J. (2009). Dynamic crushing of honeycombs and features of shock fronts. International Journal of Impact Engineering, 36(1), 165–176. https://doi.org/10.1016/j.ijimpeng.2007.11.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.