43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-Parameter Inversion Optimization for Transverse Rib Profile Enhanced Convective Heat Transfer

, , , &

References

  • S. K. Sharma and V. R. Kalamkar, “Experimental and numerical investigation of forced convective heat transfer in solar air heater with thin ribs,” Solar Energy, vol. 147, pp. 277–291, May 2017. DOI: 10.1016/j.solener.2017.03.042.
  • P. J. Bezbaruah, R. S. Das and B. K. Sarkar, “Overall performance analysis and GRA optimization of solar air heater with truncated half conical vortex generators,” Solar Energy, vol. 196, pp. 637–652, 2020. Jan. DOI: 10.1016/j.solener.2019.12.057.
  • S. S. Patel and A. Lanjewar, “Heat transfer enhancement using additional gap in symmetrical element of V-geometry roughened solar air heater,” J. Energy Storage, vol. 38, pp. 102545, Jun. 2021. DOI: 10.1016/j.est.2021.102545.
  • P. Singh, W. Li, S. V. Ekkad and J. Ren, “A new cooling design for rib roughened two-pass channel having positive effects of rotation on heat transfer enhancement on both pressure and suction side internal walls of a gas turbine blade,” Int. J. Heat Mass Transf., vol. 115, pp. 6–20, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.128.
  • L. Wang, S. Wang, F. Wen, X. Zhou and Z. Wang, “Effects of continuous wavy ribs on heat transfer and cooling air flow in a square single-pass channel of turbine blade,” Int. J. Heat Mass Transf., vol. 121, pp. 514–533, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.004.
  • R. Rezazadeh, N. Pourmahmoud and S. Asaadi, “Numerical investigation and performance analyses of rectangular mini channel with different types of ribs and their arrangements,” Int. J. Therm. Sci., vol. 132, pp. 76–85, Oct. 2018. DOI: 10.1016/j.ijthermalsci.2018.05.048.
  • N. Zheng, P. Liu, F. Shan, Z. Liu and W. Liu, “Effects of rib arrangements on the flow pattern and heat transfer in an internally ribbed heat exchanger tube,” Int. J. Therm. Sci., vol. 101, pp. 93–105, Mar. 2016. DOI: 10.1016/j.ijthermalsci.2015.10.035.
  • X. L. Li, G. H. Tang, Y. H. Fan and D. L. Yang, “A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle,” Energy Convers. Manage, vol. 256, pp. 115393, Mar. 2022. DOI: 10.1016/j.enconman.2022.115393.
  • O. Yemenici, Z. A. Firatoglu and H. Umur, “An experimental investigation of flow and heat transfer characteristics over blocked surfaces in laminar and turbulent flows,” Int. J. Heat Mass Transf., vol. 55, no. 13-14, pp. 3641–3649, Jun. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.02.064.
  • A. S. Yadav and J. L. Bhagoria, “A numerical investigation of square sectioned transverse rib roughened solar air heater,” Int. J. Therm. Sci., vol. 79, pp. 111–131, May 2014. DOI: 10.1016/j.ijthermalsci.2014.01.008.
  • R.-J. Wang, J.-W. Wang, B.-Q. Lijin and Z.-F. Zhu, “Parameterization investigation on the microchannel heat sink with slant rectangular ribs by numerical simulation,” Appl. Therm. Eng., vol. 133, pp. 428–438, Mar. 2018. DOI: 10.1016/j.applthermaleng.2018.01.021.
  • M. Kanikzadeh and A. Sohankar, “Numerical investigation of forced convection flow of nanofluids in rotating U-shaped smooth and ribbed channels,” Heat Transf. Eng., vol. 37, no. 10, pp. 840–861, 2016. DOI: 10.1080/01457632.2015.1089739.
  • Y.-T. Yang and P.-J. Chen, “Numerical optimization of turbulent flow and heat transfer characteristics in a ribbed channel,” Heat Transf. Eng., vol. 36, no. 3, pp. 290–302, 2015. DOI: 10.1080/01457632.2014.916158.
  • D. N. Ryu, D. H. Choi and V. C. Patel, “Analysis of turbulent flow in channels roughened by two-dimensional ribs and three-dimensional blocks," Part II: heat transfer,” Int. J. Heat Fluid Flow, vol. 28, no. 5, pp. 1112–1124, Oct. 2007. DOI: 10.1016/j.ijheatfluidflow.2006.11.007.
  • P. Promvonge and C. Thianpong, “Thermal performance assessment of turbulent channel flows over different shaped ribs,” Int. J. Heat Mass Transf., vol. 35, no. 10, pp. 1327–1334, Dec. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.07.016.
  • L. Chai and L. Wang, “Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers,” Int. J. Therm. Sci., vol. 127, pp. 201–212, May 2018. DOI: 10.1016/j.ijthermalsci.2018.01.029.
  • A. A. R. Alkumait, T. K. Ibrahim, M. H. Zaidan and A. T. Al-Sammarraie, “Thermal and hydraulic characteristics of TiO2/water nanofluid flow in tubes possessing internal trapezoidal and triangular rib shapes,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 379–392, Jan. 2022. DOI: 10.1007/s10973-020-10289-7.
  • N. Y. Alkhamis, A. P. Rallabandi and J.-C. Han, “Heat transfer and pressure drop correlations for square channels with V-shaped ribs at high Reynolds numbers,” J. Heat Transf., vol. 133, no. 11, pp. 111901, Nov. 2011. DOI: 10.1115/1.4004207.
  • K. Zhao, W. Lin, X. Li and J. Ren, “Effect of micro rib on aerothermal dynamic in channel flow,” Int. J. Heat Mass Transf., vol. 178, pp. 121573, Oct. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121573.
  • S. Abraham and R. P. Vedula, “Heat transfer and pressure drop measurements in a square cross-section converging channel with V and W rib turbulators,” Exp. Therm. Fluid Sci., vol. 70, pp. 208–219, Jan. 2016. DOI: 10.1016/j.expthermflusci.2015.09.003.
  • H. Chung, et al., “Augmented heat transfer with intersecting rib in rectangular channels having different aspect ratios,” Int. J. Heat Mass Transf., vol. 88, pp. 357–367, Sep. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.033.
  • H. C. Cui, et al., “Overall numerical simulation and experimental study of a hybrid oblique-rib and submerged jet impingement/microchannel heat sink,” Int. J. Heat Mass Transf., vol. 167, pp. 120839, Mar. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120839.
  • M. Jahedi, F. Berntsson, J. Wren and B. Moshfegh, “Transient inverse heat conduction problem of quenching a hollow cylinder by one row of water jets,” Int. J. Heat Mass Transf., vol. 117, pp. 748–756, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.048.
  • X. Luo and Z. Yang, “A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem,” Int. J. Heat Mass Transf., vol. 112, pp. 1062–1071, Sep. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.009.
  • J. Xu and T. Chen, “A nonlinear solution of inverse heat conduction problem for obtaining the inner heat transfer coefficient,” Heat Transf. Eng., vol. 19, no. 2, pp. 45–53, 1998. DOI: 10.1080/01457639808939920.
  • A. Kaya, M. Lazova, G. Kosmadakis, S. Lecompte and M. De Paepe, “Evaluation of existing heat transfer correlations in designing helical coil evaporators for low-temperature organic Rankine cycles via inverse design approach,” Heat Transf. Eng., vol. 40, no. 13–14, pp. 1137–1152, 2019. DOI: 10.1080/01457632.2018.1457250.
  • F. Mohebbi and M. Sellier, “Identification of space- and temperature-dependent heat transfer coefficient,” Int. J. Therm. Sci., vol. 128, pp. 28–37, Jun. 2018. DOI: 10.1016/j.ijthermalsci.2018.02.007.
  • S. Islam, M. Ahsan, and I. Hussian, “A multi-resolution collocation procedure for time-dependent inverse heat problems,” Int. J. Therm. Sci., vol. 128, pp. 160–174, Jun. 2018. DOI: 10.1016/j.ijthermalsci.2018.01.001.
  • R. S. Sudheesh and N. S. Prasad, “Comparative study of heat transfer parameter estimation using inverse heat transfer models of a trailing liquid nitrogen jet in welding,” Heat Transf. Eng., vol. 36, no. 2, pp. 178–185, 2015. DOI: 10.1080/01457632.2014.909219.
  • A. A. Shokouhi, S. Payan, A. Shokouhi and S. Sarvari, “Inverse boundary design problem of turbulent forced convection between parallel plates with surface radiation exchange,” Heat Transf. Eng., vol. 36, no. 5, pp. 488–497, 2015. DOI: 10.1080/01457632.2014.935225.
  • X.-D. Wang, et al., “An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell,” Int. J. Hydrog. Energy, vol. 35, no. 9, pp. 4247–4257, May 2010. DOI: 10.1016/j.ijhydene.2010.02.059.
  • C.-H. Huang and P.-C. Chiang, “An inverse study to design the optimal shape and position for delta winglet vortex generators of pin-fin heat sinks,” Int. J. Therm. Sci., vol. 109, pp. 374–385, Nov. 2016. DOI: 10.1016/j.ijthermalsci.2016.06.018.
  • D.-D. Zhang, J.-H. Zhang, D. Liu, F.-U. Zhao and H.-Q. Wang, “Conjugate thermal transport enhancement for an air filled enclosure with heat conducting partitions using inverse convection methodology,” Int. J. Heat Mass Transf., vol. 102, pp. 788–800, Nov. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.030.
  • C. Min, X. Li, Y. Yuan, Z. Chen and L. Tian, “An inverse study to optimize the rib pitch in a two–dimensional channel flow problem for heat transfer enhancement,” Int. J. Heat Mass Transf., vol. 112, pp. 1044–1051, Sep. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.001.
  • C. Min, X. Yang, K. Wang, Y. Yuan and L. Xie, “An inverse optimization of convection heat transfer in rectangle channels with ribbed surface based on the extremum principle of entransy dissipation,” Int. J. Heat Mass Transf., vol. 130, pp. 722–732, Mar. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.079.
  • J.-W. Seo, A. Afzal and K.-Y. Kim, “Efficient multi–objective optimization of a boot–shaped rib in a cooling channel,” Int. J. Therm. Sci., vol. 106, pp. 122–133, Aug. 2016. DOI: 10.1016/j.ijthermalsci.2016.03.015.
  • C. Min, J. Chen, X. Yang, K. Wang and L. Xie, “Inverse simulation to optimize the rib-profile in a rectangular flow-channel,” Int. Commun. Heat Mass Transf., vol. 114, pp. 104567, May 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104567.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, Jan. 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • P. Duda, “Solution of inverse heat conduction problem using the Tikhonov regularization method,” J. Therm. Sci, vol. 26, no. 1, pp. 60–65, Feb. 2016. DOI: 10.1007/s11630-017-0910-2.
  • D. Ma, W. Tan, Z. Zhang and J. Hu, “Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm,” J. Hazard. Mater., vol. 325, pp. 239–250, Mar. 2017. DOI: 10.1016/j.jhazmat.2016.11.071.
  • B. Zhang, H. Qi, S.-C. Sun, L.-M. Ruan and H.-P. Tan, “Solving inversion optimizations of radiative heat transfer and phase change in semitransparent medium using improved quantum particle swarm optimization,” Int. J. Heat Mass Transf., vol. 85, pp. 300–310, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.140.
  • K. Wang and Y.-L. He, “Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling,” Energy Convers. Manage, vol. 135, pp. 336–350, Mar. 2017. DOI: 10.1016/j.enconman.2016.12.085.
  • M. Cui, Y. Zhao, B. Xu and X.-W. Gao, “A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem,” Int. J. Heat Mass Transf., vol. 107, pp. 747–754, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.101.
  • M. Cui, K. Yang, X.-L. Xu, S.-D. Wang and X.-W. Gao, “A modified Levenberg–Marquardt algorithm for simultaneous estimation of multi–parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems,” Int. J. Heat Mass Transf., vol. 97, pp. 908–916, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.085.
  • Y.-X. Huang, X.-D. Wang, C.-H. Cheng and D. T.-W. Lin, “Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method,” Energy, vol. 59, pp. 689–697, Sept. 2013. DOI: 10.1016/j.energy.2013.06.069.
  • L. Lin, Y.-Y. Chen, X.-X. Zhang and X.-D. Wang, “Optimization of geometry and flow rate distribution for double-layer microchannel heat sink,” Int. J. Therm. Sci., vol. 78, pp. 158–168, Apr. 2014. DOI: 10.1016/j.ijthermalsci.2013.12.009.
  • C. Leng, X.-D. Wang, T.-H. Wang and W.-M. Yan, “Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sink,” Energy Conv. Manag., vol. 93, pp. 141–150, Mar. 2015. DOI: 10.1016/j.enconman.2015.01.004.
  • Z. Liu, et al., “Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method,” Appl. Energy, vol. 190, pp. 540–552, Mar. 2017. DOI: 10.1016/j.apenergy.2017.01.002.
  • C.-H. Cheng and M.-H. Chang, “A simplified conjugate-gradient method for shape identification based on thermal data,” Numer. Heat Transf. B, vol. 43, no. 5, pp. 489–507, 2003. DOI: 10.1080/713836242.
  • Y. Çengle, and A. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 6th ed., New York, NY: McGraw-Hill Education, 2020.
  • I. Kilicaslan and H. I. Sarac, “Enhancement of heat transfer in compact heat exchanger by different type of rib with holographic interferometry,” Experimental Thermal Fluid Sci., vol. 17, no. 4, pp. 339–346, Aug. 1998. DOI: 10.1016/S0894-1777(98)00006-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.