107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study on Flow Field and Heat Transfer Enhancement in a Cooling Channel With Novel Ribs Based on Battery Thermal Management System

ORCID Icon, , , &

References

  • P. H. Andersen, J. A. Mathews and M. Rask, “Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles,” Energy Policy, vol. 37, no. 7, pp. 2481–2486, Jul. 2009. DOI: 10.1016/j.enpol.2009.03.032.
  • G. Santos, “Road transport and CO2 emissions: what are the challenges?,” Transp. Policy, vol. 59, pp. 71–74, Oct. 2017. DOI: 10.1016/j.tranpol.2017.06.007.
  • R. R. Kumar and K. Alok, “Adoption of electric vehicle: a literature review and prospects for sustainability,” J. Clean. Prod., vol. 253, pp. 119911, Apr. 2020. DOI: 10.1016/j.jclepro.2019.119911.
  • IEA. “Global EV outlook 2023 – Catching up with climate ambitions,” International Energy Agency, pp. 14-62, Available: https://www.iea.org/reports/global-ev-outlook-2023. Accessed: Jun. 19, 2023.
  • Z. P. Cano, et al., “Batteries and fuel cells for emerging electric vehicle markets,” Nat. Energy, vol. 3, no. 4, pp. 279–289, Apr. 2018. DOI: 10.1038/s41560-018-0108-1.
  • V. Mali, R. Saxena, K. Kumar, A. Kalam and B. Tripathi, “Review on battery thermal management systems for energy-efficient electric vehicles,” Renew. Sustain. Energy Rev., vol. 151, pp. 111611, Nov. 2021. DOI: 10.1016/j.rser.2021.111611.
  • A. A. Pesaran, “Battery thermal models for hybrid vehicle simulations,” J. Power Sources, vol. 110, no. 2, pp. 377–382, Aug. 2002. DOI: 10.1016/S0378-7753(02)00200-8.
  • C. Zhao, A. C. M. Sousa and F. Jiang, “Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow,” Int. J. Heat Mass Transf., vol. 129, pp. 660–670, Feb. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.017.
  • J. Lin, X. Liu, S. Li, C. Zhang and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” Int. J. Heat Mass Transf., vol. 167, pp. 120834, Mar. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120834.
  • X. Na, H. Kang, T. Wang and Y. Wang, “Reverse layered air flow for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 143, pp. 257–262, Oct. 2018. DOI: 10.1016/j.applthermaleng.2018.07.080.
  • T. Wang, K. J. Tseng and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Appl. Therm. Eng., vol. 90, pp. 521–529, Nov. 2015. DOI: 10.1016/j.applthermaleng.2015.07.033.
  • L. W. Jin, P. S. Lee, X. X. Kong, Y. Fan and S. K. Chou, “Ultra-thin minichannel LCP for EV battery thermal management,” Appl. Energy, vol. 113, pp. 1786–1794, Jan. 2014. DOI: 10.1016/j.apenergy.2013.07.013.
  • C. Zhao, W. Cao, T. Dong and F. Jiang, “Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow,” Int. J. Heat Mass Transf., vol. 120, pp. 751–762, May 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.083.
  • R. Zhao, J. Gu and J. Liu, “An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries,” J. Power Sources, vol. 273, pp. 1089–1097, Jan. 2015. DOI: 10.1016/j.jpowsour.2014.10.007.
  • Z. Rao, Y. Huo, X. Liu and G. Zhang, “Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam,” J. Energy Inst., vol. 88, no. 3, pp. 241–246, Aug. 2015. DOI: 10.1016/j.joei.2014.09.006.
  • C. Zhao, et al., “Periodic structures for melting enhancement: observation of critical cell size and localized melting,” Int. J. Heat Mass Transf., vol. 195, pp. 123107, Oct. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123107.
  • M. E. Taslim and A. Lengkong, “45 deg staggered rib heat transfer coefficient measurements in a square channel,” J. Turbomach., vol. 120, no. 3, pp. 571–580, Jul. 1998. DOI: 10.1115/1.2841755.
  • Z. R. Chi, J. Ren and H. D. Jiang, “Heat transfer of channels with repeated ribs in turbine blades part II: conjugate heat transfer characteristics,” J. Eng. Thermophys., vol. 35, no. 1, pp. 42–45, 2014.
  • L. Al-Hadhrami and J.-C. Han, “Effect of rotation on heat transfer in two-pass square channels with five different orientations of 45° angled rib turbulators,” Int. J. Heat Mass Transf., vol. 46, no. 4, pp. 653–669, Feb. 2003. DOI: 10.1016/S0017-9310(02)00325-3.
  • S. U. Onbasioglu and H. Onbaşıoğlu, “On enhancement of heat transfer with ribs,” Appl. Therm. Eng., vol. 24, no. 1, pp. 43–57, Jan. 2004. DOI: 10.1016/S1359-4311(03)00216-3.
  • M.-A. Moon, M.-J. Park and K.-Y. Kim, “Evaluation of heat transfer performances of various rib shapes,” Int. J. Heat Mass Transf., vol. 71, pp. 275–284, Apr. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.026.
  • J.-C. Han, S. Dutta and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., Boca Raton, Florida: CRC Press, 2000,
  • J.-C. Han, “Fundamental Gas Turbine Heat Transfer,” J. Therm. Sci. Eng., vol. 5, no. 2, pp. 021007, May 2013. DOI: 10.1115/1.4023826.
  • L. M. Wright and J.-C. Han, “Heat transfer enhancement for turbine blade internal cooling,” J. Enhanc. Heat Transf., vol. 21, no. 2-3, pp. 111–140, 2014. DOI: 10.1615/JEnhHeatTransf.2015012169.
  • J.-C. Han, Y. M. Zhang and C. P. Lee, “Augmented heat transfer in square channels with parallel, crossed, and v-shaped angled ribs,” J. Heat Transf., vol. 113, no. 3, pp. 590–596, Aug. 1991. DOI: 10.1115/1.2910606.
  • N. Kaewchoothong and C. Nuntadusit, “Flow and heat transfer behaviors in a two-pass rotating channel with rib turbulators using computational fluid dynamics,” Heat Transf. Eng., vol. 44, no. 2, pp. 175–195, 2023. DOI: 10.1080/01457632.2022.2034086.
  • N. Kaewchoothong, K. Maliwan, K. Takeishi and C. Nuntadusit, “Effect of inclined ribs on heat transfer coefficient in stationary square channel,” Theor. App. Mech. Lett., vol. 7, no. 6, pp. 344–350, Nov. 2017. DOI: 10.1016/j.taml.2017.09.013.
  • L. M. Wright, W.-L. Fu and J.-C. Han, “Thermal performance of angled, V-shaped, and W-shaped rib turbulators in rotating rectangular cooling channels (AR = 4:1),” J. Turbomach., vol. 126, no. 4, pp. 604–614, Oct. 2004. DOI: 10.1115/1.1791286.
  • R. Maithani and J. S. Saini, “Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps,” Exp. Therm. Fluid Sci., vol. 70, pp. 220–227, Jan. 2016. DOI: 10.1016/j.expthermflusci.2015.09.010.
  • A. Boonloi and W. Jedsadaratanachai, “Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator,” Chin. J. Chem. Eng., vol. 23, no. 8, pp. 1256–1265, Aug. 2015. DOI: 10.1016/j.cjche.2015.04.001.
  • J.-C. Han, J. J. Huang and C.-P. Lee, “Augmented Heat Transfer in Square Channels with Wedge-Shaped and Delta-Shaped Turbulence Promoters,” J. Enhanc. Heat Transf., vol. 1, no. 1, pp. 37–52, 1993. DOI: 10.1615/JEnhHeatTransf.v1.i1.40.
  • P. Singh, Y. Ji and S. V. Ekkad, “Experimental and numerical investigation of heat and fluid flow in a square duct featuring criss-cross rib patterns,” Appl. Therm. Eng., vol. 128, pp. 415–425, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.036.
  • L. Wang, et al., “Numerical predictions on heat transfer and flow characteristics in a straight channel with different geometric parameters wavy ribs,” Appl. Therm. Eng., vol. 140, pp. 245–265, Jul. 2018. DOI: 10.1016/j.applthermaleng.2018.05.059.
  • L. Wang, S. Wang, F. Wen, X. Zhou and Z. Wang, “Effects of continuous wavy ribs on heat transfer and cooling air flow in a square single-pass channel of turbine blade,” Int. J. Heat Mass Transf., vol. 121, pp. 514–533, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.004.
  • P. Singh, W. Li, S. V. Ekkad and J. Ren, “Experimental and numerical investigation of heat transfer inside two-pass rib roughened duct (AR = 1:2) under rotating and stationary conditions,” Int. J. Heat Mass Transf., vol. 113, pp. 384–398, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.085.
  • L. F. Richardson, “IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,” Philos. Trans. R. Soc. A, vol. 210, pp. 307–357, Jan. 1911. DOI: 10.1098/rsta.1911.0009.
  • L. F. Richardson and J. A. Gaunt, “VIII. The deferred approach to the limit,” Philos. Trans. R. Soc. A, vol. 226, pp. 299–361, Jan. 1927. DOI: 10.1098/rsta.1927.0008.
  • N. Kaewchoothong, K. Maliwan, K. Takeishi and C. Nuntadusit, “Effect of rotation number on flow and heat transfer characteristics in serpentine passage with ribbed walls,” J. Mech. Sci. Technol., vol. 32, no. 9, pp. 4461–4471, Sep. 2018. DOI: 10.1007/s12206-018-0843-z.
  • T. Gao, J. Zhu, J. Li and Q. Xia, “Numerical study of the influence of rib orientation on heat transfer enhancement in two-pass ribbed rectangular channel,” Eng. Appl. Comp. Fluid, vol. 12, no. 1, pp. 117–136, 2018. DOI: 10.1080/19942060.2017.1360210.
  • N. Kaewchoothong, P. Narato and C. Nuntadusit, “Experimental investigation of the heat transfer characteristics and thermal performance inside a ribbed serpentine channel during rotational effects,” Exp. Therm. Fluid Sci., vol. 111, pp. 109973, Feb. 2020. DOI: 10.1016/j.expthermflusci.2019.109973.
  • I. B. Celik, U. Ghia, P. J. Roache and C. J. Freitas, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng., vol. 130, no. 7, pp. 078001, Jul. 2008. DOI: 10.1115/1.2960953.
  • N. Kaewchoothong, T. Sukato, P. Narato and C. Nuntadusit, “Flow and heat transfer characteristics on thermal performance inside the parallel flow channel with alternative ribs based on photovoltaic/thermal (PV/T) system,” Appl. Therm. Eng., vol. 185, pp. 116237, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116237.
  • M. Maurer, J. Von. Wolfersdorf and M. Gritsch, “An experimental and numerical study of heat transfer and pressure losses of V-and W-shaped ribs at high Reynolds numbers,” ASME Turbo Expo, 2007, vol. 4, pp. 2009. 219–228, Mar. DOI: 10.1115/GT2007-27167.
  • F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” Int. Commun. Heat Mass Transf., vol. 12, no. 1, pp. 3–22, Jan. 1985. DOI: 10.1016/0735-1933(85)90003-X.
  • D. Bernardi, E. Pawlikowski and J. Newman, “A general energy balance for battery systems,” J. Electrochem. Soc., vol. 132, no. 1, pp. 5–12, Jan. 1985. DOI: 10.1149/1.2113792.
  • H. Blasius, “Das aehnlichkeitsgesetz bei reibungsvorgangen in fl€ussigkeiten,” in Mitteilungen UberForschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens: Insbesondere Aus Den Laboratorien Der Technischen Hochschulen, Berlin, Heidelberg: Springer, 1913, pp. 1–41.
  • A. Chaube, S. Gupta and P. Verma, “Heat transfer and friction factor enhancement in a square channel having integral inclined discrete ribs on two opposite walls,” J. Mech. Sci. Technol., vol. 28, no. 5, pp. 1927–1937, May 2014. DOI: 10.1007/s12206-014-0143-1.
  • G. Pangjino, P. Narato, C. Nuntadusit and N. Kaewchoothong, “air bubble effect on heat transfer enhancement in 90° ribbed parallel channels based on photovoltaic-thermal collector cooling,” Heat Transf. Eng., vol. 45, no. 19, pp. 1–15, Oct. 2023. DOI: 10.1080/01457632.2023.2275238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.