105
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Digital soil mapping enables informed decision-making to conserve soils within protected areas

ORCID Icon & ORCID Icon
Pages 216-226 | Received 12 Jun 2023, Accepted 31 Aug 2023, Published online: 08 Jan 2024

References

  • Bridges EM, Oldeman LR. 1999. Global Assessment of Human Induced Soil Degradation. Arid Soil Research and Rehabilitation, 13:4, 319–325, DOI: 10.1080/089030699263212
  • Council for Geoscience. 2007. Geological data 1:250 000. Council for Geoscience, Pretoria, South Africa.
  • du Plessis CJ, van Zijl GM, van Tol JJ, Manyevere A. 2020. Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa. Geoderma, 368 (114287). https://doi.org/10.1016/j.geoderma.2020.114287.
  • Flynn T, van Zijl GM, Van Tol JJ, Botha CC, Rozanov A, Warr B, Clarke C. 2019. Comparing algorithms to disaggregate complex soil polygons in contrasting environments. Geoderma 352: 171–180. https://doi.org/10.1016/j.geoderma.2019.06.013
  • Goldman S, Wischmeier W. 1986. Erosion and sediment control handbook. New York: McGraw Hill.
  • Hazelton P, Murphy B. 2007. Interpreting soil test results: what do all the numbers mean? Collingwood: CSIRO Publishing.
  • Hockings M. 2003. Systems for assessing the effectiveness of management in protected areas. Bioscience 53(9): 823–832.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014. Update 2015: International soil classification system for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). Rome: Food and Agriculture Organization of the UN.
  • Kempen B, Brus DJ, Heuvelink GBM, Stoorvogel JJ. 2009. Updating the 1: 50 000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, 151: 311–326.
  • Land Type Survey Staff. 1972–2006. Land types of South Africa: Digital map (1:250 000 scale) and soil inventory datasets. ARC-Institute for Soil, Climate and Water, Pretoria.
  • Liu J, Linderman M, Ouyang Z, An L, Yang J, Zhang H. 2001. Ecological degradation in protected areas: The case of Wolong Nature Reserve for Giant Pandas. Science 292: 98–101.
  • Lopoukhine N, Crawhall N, Dudley N, Figgis P, Karibuhoye C, et al. 2012. Protected areas: providing natural solutions to 21st century challenges. SAPIENS 5: 11–131. https://journals.openedition.org/sapiens/1254
  • McBratney AB, Mendoça Santos ML, Minasny B. 2003. On digital soil mapping. Geoderma 117: 3–52.
  • Minasny B, McBratney AB. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences. 32, 1378–1388.
  • Mucina L, Rutherford MC (eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.
  • Nortje GP. 2013. Studies on the impacts of off-road driving and the influence of tourists’ consciousness and attitudes on soil compaction and associated vegetation in the Makuleke Contractual Park, Kruger National Park. PhD thesis. University of Pretoria.
  • Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K, et al. 2019: Land Degradation. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, et al. (eds). Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://doi.org/10.1017/9781009157988.006.
  • Ribas LG, Pressey RL, Loyola R, Bini LM. 2020. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected area. Biological Conservation 246: 108595.
  • Scholes R, Montanarella L, Brainich A, Barger N, ten Brink B, et al. 2018. Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Bonn: IPBES Secretariat.
  • Schulze RE. 2007. South African atlas of climatology and agrohydrology (WRC report 1489/1/06). Pretoria: Water Research Commission.
  • Soil Classification Working Group (SCWG). 2018. Soil classification: a natural and anthropogenic system for South Africa. Pretoria: ARC–Institute for Soil, Climate and Water.
  • Statistics South Africa. 2021. Accounts for Protected Areas, 1900 to 2020 (Natural Capital Series 2: Discussion document D0401.2). Produced in collaboration with the South African National Biodiversity Institute and the Department of Forestry, Fisheries and the Environment. Pretoria: Statistics South Africa.
  • United Nations Environment Programme (UNEP). 1997. World atlas of desertification (2nd edn). London: Arnold.
  • van Zijl GM, Smith HJC, Le Roux PAL. 2012. Rapid soil mapping under restrictive conditions in Tete, Mozambique. In: Minasny B, McBratney AB, Malone B (eds), Digital soil assessments and beyond. Boca Raton: CRC Press, pp. 335–340.
  • van Zijl GM, Le Roux PAL. 2014. Creating a hydrological soil map for the Stevenson Hamilton Supersite, Kruger National Park. Water SA 40(2): 331–336. https://doi.org/10.4314/wsa.v40i2.15
  • van Zijl GM, Ellis F, Rozanov DA. 2014a. Soil properties affecting gully erosion in a severely degraded catchment in Lesotho. South African Journal of Plant and Soil 31(3): 163–172. http://doi.org/10.1080/02571862.2014.944228
  • van Zijl GM, Bouwer D, Van Tol JJ, Le Roux PAL. 2014b. Functional digital soil mapping: a case study from Namarroi, Mozambique. Geoderma 219-220: 155–161. http://doi.org/10.1016/j.geoderma.2013.12.014
  • van Zijl GM. 2019. Digital soil mapping approaches to address real world problems in southern Africa. Geoderma 337: 1301–1308. https://doi.org/10.1016/j.geoderma.2018.07.052
  • van Zijl GM, Van Tol JJ, Bouwer D, Lorentz S, Le Roux PAL. 2020. Combining historical remote sensing, digital soil mapping and hydrological modelling to produce solutions for infrastructure damage in Cosmo City, South Africa. Remote Sensing 12: 433. https://doi.org/10.3390/rs12030433
  • Vieira RRS, Pressey RL, Loyola R. 2019. The residual nature of protected areas in Brazil. Biological Conservation 233: 152–161. https://doi.org/10.1016/j.biocon.2019.02.010.
  • Zhu A-X. 1997. A similarity model for representing soil spatial information. Geoderma 77: 217–242. https://doi.org/10.1016/S0016-7061(97)00023-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.