138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Constructing superior rate-performance manganese-based anode for lithium-ion batteries by tuning interface effect

, , , &
Pages 3198-3208 | Received 16 Feb 2023, Accepted 02 Aug 2023, Published online: 31 Aug 2023

References

  • Wang L, Li Y, Han Z, et al. Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. J Mater Chem A. 2013;1(29):8385–8397.
  • Seong C-Y, Park S-K, Bae Y, et al. An acid-treated reduced graphene oxide/Mn3O4 nanorod nanocomposite as an enhanced anode material for lithium ion batteries. RSC Adv. 2017;7(60):37502–37507. doi: 10.1039/C7RA06396B
  • Peng H-J, Hao G-X, Chu Z-H, et al. Mesoporous Mn3O4/C microspheres fabricated from MOF template as advanced lithium-ion battery anode. Cryst Growth Des. 2017;17(11):5881–5886. doi: 10.1021/acs.cgd.7b00978
  • Li Z, Tang B. Multiple covalent interactions and open-void co-involved Mn3O4/nitrogen-doped porous carbon fiber hybrids as flexible anodes for lithium-ion batteries. Green Chem. 2017;19(24):5862–5873. doi: 10.1039/C7GC02786A
  • Luo Y, Fan S, Hao N, et al. An ultrasound-assisted approach to synthesize Mn3O4/RGO hybrids with high capability for lithium ion batteries. Dalton Trans. 2014;43(41):15317–15320. doi: 10.1039/C4DT01695E
  • Qin Y, Jiang Z, Guo L, et al. Controlled thermal oxidation derived Mn3O4 encapsulated in nitrogen doped carbon as an anode for lithium/sodium ion batteries with enhanced performance. Chem Eng J. 2021;406:126894. doi: 10.1016/j.cej.2020.126894
  • Yu D, Hou Y, Han X, et al. Enhanced lithium-ion storage performance from high aspect ratio Mn3O4 nanowires. Mater Lett. 2015;159:182–184. doi: 10.1016/j.matlet.2015.03.064
  • Yang Y, Huang X, Xiang Y, et al. Mn3O4 with different morphologies tuned through one-step electrochemical method for high-performance lithium-ion batteries anode. J Alloys Compd. 2019;771:335–342. doi: 10.1016/j.jallcom.2018.08.328
  • Akhtar MS, Bui PTM, Li Z-Y, et al. Impact of porous Mn3O4 nanostructures on the performance of rechargeable lithium ion battery: excellent capacity and cyclability. Solid State Ion. 2019;336:31–38. doi: 10.1016/j.ssi.2019.03.010
  • Cao K, Jia Y, Wang S, et al. Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage. J Alloys Compd. 2021;854:157179. doi: 10.1016/j.jallcom.2020.157179
  • Li B, Huang X, Li J, et al. Design of pseudocapacitance and amorphization co-enhanced Mn3O4/graphene sheets nanocomposites for high-performance lithium storage. Appl Surf Sci. 2021;563:150199. doi: 10.1016/j.apsusc.2021.150199
  • Zhang J, Chu R, Chen Y, et al. Porous carbon encapsulated Mn3O4 for stable lithium storage and its ex-situ XPS study. Electrochim Acta. 2019;319:518–526. doi: 10.1016/j.electacta.2019.07.019
  • Wu L, Huang S, Dong W, et al. Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. J Colloid Interface Sci. 2021;594:531–539. doi: 10.1016/j.jcis.2021.03.032
  • Dong T, Wang G, Yang P. Electrospun NiFe2O4@C fibers as high-performance anode for lithium-ion batteries. Diam Relat Mater. 2017;73:210–217. doi: 10.1016/j.diamond.2016.09.024
  • Abouali S, Akbari Garakani M, Zhang B, et al. Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces. 2015;7(24):13503–13511. doi: 10.1021/acsami.5b02787
  • Lei X, Li Y, Weng C, et al. Construction of heterostructured NiFe2O4-C nanorods by transition metal recycling from simulated electroplating sludge leaching solution for high performance lithium ion batteries. Nanoscale. 2020;12(25):13398–13406. doi: 10.1039/D0NR02290J
  • Chen B, Jiang Z, Zhou L, et al. Electronic coupling induced high performance of N, S-codoped graphene supported CoS2 nanoparticles for catalytic reduction and evolution of oxygen. J Power Sources. 2018;389:178–187. doi: 10.1016/j.jpowsour.2018.04.010
  • Lee Y-T, Kuo C-T, Yew T-R. Investigation on the voltage hysteresis of Mn3O4 for lithium-ion battery applications. ACS Appl Mater Interfaces. 2021;13(1):570–579. doi: 10.1021/acsami.0c18368
  • Fang X, Lu X, Guo X, et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun. 2010;12(11):1520–1523. doi: 10.1016/j.elecom.2010.08.023
  • Yonekura D, Iwama E, Ota N, et al. Progress of the conversion reaction of Mn3O4 particles as a function of the depth of discharge. Phys Chem Chem Phys. 2014;16(13):6027. doi: 10.1039/c4cp00334a
  • Sun Y, Jiao R, Zuo X, et al. Novel bake-in-salt method for the synthesis of mesoporous Mn3O4@C networks with superior cycling stability and rate performance. ACS Appl Mater Interfaces. 2016;8(51):35163–35171. doi: 10.1021/acsami.6b10121
  • Ma X, Zhai Y, Wang N, et al. Mn3O4@C core–shell composites as an improved anode for advanced lithium ion batteries. RSC Adv. 2015;5(58):46829–46833. doi: 10.1039/C5RA07394D
  • Ayhan IA, Li Q, Meduri P, et al. Effect of Mn3O4 nanoparticle composition and distribution on graphene as a potential hybrid anode material for lithium-ion batteries. RSC Adv. 2016;6(39):33022–33030. doi: 10.1039/C5RA27343A
  • Varghese SP, Babu B, Prasannachandran R, et al. Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries. J Alloys Compd. 2019;780:588–596. doi: 10.1016/j.jallcom.2018.11.394
  • Zhang L, Zhao L, Lian J. Nanostructured Mn3O4–reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of Orange II and high lithium storage capacity. RSC Adv. 2014;4(79):41838–41847. doi: 10.1039/C4RA07534J
  • Zhao Y, Ma C, Li Y. One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries. Chem Phys Lett. 2017;673:19–23. doi: 10.1016/j.cplett.2017.02.002
  • Voskanyan AA, Ho C-K, Chan KY. 3D δ-MnO2 nanostructure with ultralarge mesopores as high-performance lithium-ion battery anode fabricated via colloidal solution combustion synthesis. J Power Sources. 2019;421:162–168. doi: 10.1016/j.jpowsour.2019.03.022
  • Wang J-G, Jin D, Zhou R, et al. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano. 2016;10(6):6227–6234. doi: 10.1021/acsnano.6b02319
  • Guo L, Ding Y, Qin C, et al. Anchoring Mn3O4 nanoparticles onto nitrogen-doped porous carbon spheres derived from carboxymethyl chitosan as superior anodes for lithium-ion batteries. J Alloys Compd. 2018;735:209–217. doi: 10.1016/j.jallcom.2017.11.068
  • Zhang D, Li G, Fan J, et al. In situ synthesis of Mn3O4 nanoparticles on hollow carbon nanofiber as high-performance lithium-ion battery anode. Chem - Eur J. 2018;24(38):9632–9638. doi: 10.1002/chem.201801196
  • Wang L, Li L, Wang H, et al. Stable conversion Mn3O4 Li-ion battery anode material with integrated hierarchical and core–shell structure. ACS Appl Energy Mater. 2019;2(7):5206–5213. doi: 10.1021/acsaem.9b00839
  • Fang L, Lan Z, Guan W, et al. Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 2019;18:107–113. doi: 10.1016/j.ensm.2018.10.002
  • Zheng Y, Zhou T, Zhang C, et al. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Ed. 2016;55(10):3408–3413. doi: 10.1002/anie.201510978
  • Liu Y, Zhou T, Zheng Y, et al. Local electric field facilitates high-performance Li-ion batteries. ACS Nano. 2017;11(8):8519–8526. doi: 10.1021/acsnano.7b04617
  • Chen B. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy. 2016;26:541–549. doi: 10.1016/j.nanoen.2016.06.003
  • Kim H, Choi W, Yoon J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem Rev. 2020;120(14):6934–6976. doi: 10.1021/acs.chemrev.9b00618
  • Keppeler M, Srinivasan M. Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: a review. ChemElectroChem. 2017;4(11):2727–2754. doi: 10.1002/celc.201700747
  • Su L, Zhong Y, Zhou Z. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J Mater Chem A. 2013;1:15158–15166. doi: 10.1039/c3ta13233a
  • Su L, Zhou Z, Shen P. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J Phys Chem C. 2012;116:23974–23980. doi: 10.1021/jp310054b
  • Ke X, Liang Y, Ou L, et al. Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 2019;23:547–555. doi: 10.1016/j.ensm.2019.04.003
  • Kim H, Venugopal N, Yoon J, et al. A facile and surfactant-free synthesis of porous hollow λ-MnO2 3D nanoarchitectures for lithium ion batteries with superior performance. J Alloys Compd. 2019;778:37–46. doi: 10.1016/j.jallcom.2018.11.107
  • Weng S-C, Brahma S, Huang P-C, et al. Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries. Appl Surf Sci. 2020;505:144629. doi: 10.1016/j.apsusc.2019.144629
  • Wang S, Li S, Cui Q, et al. Boosting the high-rate performance of lithium-ion battery anode using ternary metal oxide composite interface. J Electroanal Chem. 2022;924:116858. doi: 10.1016/j.jelechem.2022.116858
  • Liu G, Wang N, Qi F, et al. Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg Chem Front. 2023;10:699–711. doi: 10.1039/D2QI01973F
  • Feng L, Xuan Z, Zhao H, et al. Mno2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett. 2014;9(1):290. doi: 10.1186/1556-276X-9-290
  • Zhang X, Li S, Wang S, et al. Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries. Ionics. 2022;28:139–149. doi: 10.1007/s11581-021-04303-7
  • Liu K, Wang J, Yang J, et al. Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes. Chem Eng J. 2021;407:127190. doi: 10.1016/j.cej.2020.127190
  • Liu G, Yang Y, Lu X, et al. Fully active bimetallic phosphide Zn0.5Ge0.5P: a novel high-performance anode for Na-ion batteries coupled with diglyme-based electrolyte. ACS Appl Mater Interfaces. 2022;14:31803–31813. doi: 10.1021/acsami.2c03813
  • Sun T, Nian Q, Zheng S, et al. Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. J Power Sources. 2020;478:228758. doi: 10.1016/j.jpowsour.2020.228758
  • Zhao J, Ren H, Liang Q, et al. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy. 2019;62:94–102. doi: 10.1016/j.nanoen.2019.05.010
  • Lou S, Cheng X, Gao J, et al. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018;11:57–66. doi: 10.1016/j.ensm.2017.09.012
  • Yang J, Gao H, Men S, et al. Cose2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci. 2018;5(12):1800763. doi: 10.1002/advs.201800763
  • Li Y, Huang Z, Kalambate PK, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy. 2019;60:752–759. doi: 10.1016/j.nanoen.2019.04.009
  • Guo J, Chen Y, Xiao Y, et al. Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries. Chem Eng J. 2021;422:130526. doi: 10.1016/j.cej.2021.130526
  • Zhang J, Li X, Li Y, et al. Cross-linked nanohybrid polymer electrolytes with POSS cross-linker for solid-state lithium ion batteries. Front Chem. 2018;6:186. doi: 10.3389/fchem.2018.00186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.