423
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low-cycle fatigue mashing behaviours of HTRB630 high-strength steel exposed to high temperatures

, , &
Pages 3332-3344 | Received 11 Nov 2022, Accepted 17 Jun 2023, Published online: 15 Sep 2023

References

  • Ni X, Cao S, Liang S, et al. High-strength bar reinforced concrete walls: cyclic loading test and strength prediction. Eng Struct. 2019;198:109508. doi:10.1016/j.engstruct.2019.109508
  • Han Q, Hu M, Xu K, et al. Hysteretic behavior and modelling of ultra-high-strength steel bar including buckling. B Earthq Eng. 2019;17(9):5265–5289. doi:10.1007/s10518-019-00675-4
  • ACI Committee 318. Building code requirements for structural concrete (ACI 318-08) and commentary. Farmington Hills (MI): American Concrete Institute; 2008.
  • BS. Eurocode 2: Design of Concrete Structures. Part 1. General rules and rules for buildings. 2004. British Standards Institution, Brussels, Belgium, 2004.
  • Technical Standards for Engineering Construction Enterprises in Jiangsu Province. T63 heat treatment technical specification for ribbed high strength reinforced concrete structure: Q/321182 KBC001-2016. Nanjing: Jiangsu Science and Technology Press; 2016.
  • Sun CZ, Li AQ, Miao CQ, et al. Research on cumulated damages of prestressed concrete solid pile using snap-in mechanical connection. Earthq Eng Eng Dyn. 2018;38(3):211–222.
  • Gao L, Sun CZ, Zhuang ML, et al. Fatigue life prediction of HTRB630E steel bars based on modified Coffin-Manson model under pre-strain. Structures. 2022;38:28–29. doi:10.1016/j.istruc.2022.01.083
  • Ding Y, Wu DQ, Su JS, et al. Experimental and numerical investigations on seismic performance of RC bridge piers considering buckling and low-cycle fatigue of high-strength steel bars. Eng Struct. 2021;227:111464. doi:10.1016/j.engstruct.2020.111464
  • Kurklu G. Determination of physico-mechanical properties and high temperature behavior of stressed reinforcing steels. Prot Met Phys Chem+. 2019;55(5):924–935. doi:10.1134/S2070205119050095
  • Li Y, Yan W, Lu X, et al. A case study on a fire-induced collapse accident of a reinforced concrete frame-supported masonry structure. Fire Technol. 2016;52(3):707–729. doi:10.1007/s10694-015-0491-0
  • Wang YC. Performance of steel-concrete composite structures in fire. Prog Struct Eng Mat. 2010;7(2):86–102. doi:10.1002/pse.197
  • Vishal M, Satyanarayanan KS. A review on research of fire-induced progressive collapse on structures. J Struct Fire Eng. 2021;12(3):410–425. doi:10.1108/JSFE-07-2020-0023
  • Agarwal A, Varma AH. Fire induced progressive collapse of steel building structures: the role of interior gravity columns. Eng Struct. 2014;58:129–140. doi:10.1016/j.engstruct.2013.09.020
  • Gong XF, Wang TJ, Li QS, et al. Cyclic responses and microstructure sensitivity of Cr-based turbine steel under different strain ratios in low cycle fatigue regime. Mater Design. 2021;201:109529. doi:10.1016/j.matdes.2021.109529
  • Wang YZ, Xu TG, Liu ZQ. Seismic behavior of steel reinforced concrete cross-shaped columns after exposure to high temperatures. Eng Struct. 2021;230:11723.
  • Liu ZQ, Wang YZ, Li GQ, et al. Mechanical behavior of cross-shaped steel reinforced concrete columns after exposure to high temperatures. Fire Safety J. 2019;108:102857. doi:10.1016/j.firesaf.2019.102857
  • Wang QY, Wang QY, Gong XF, et al. A comparative study of low cycle fatigue behavior and microstructure of Cr-based steel at room and high temperatures. Mater Design. 2020;195:109000. doi:10.1016/j.matdes.2020.109000
  • Kodur VKR, Alogla SM. Effect of high-temperature transient creep on response of reinforced concrete columns in fire. Mater Struct. 2017;50:27. doi:10.1617/s11527-016-0903-8
  • Tariq F, Bhargava P. Residual mechanical behavior of (SD 500) hot rolled TMT reinforcing steel bars after elevated temperatures. Constr Build Mater. 2018;190:551–559. doi:10.1016/j.conbuildmat.2018.09.008
  • Ergun A, Kurklu G, Serhat BM, et al. The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Safety J. 2013;55(1):160–167. doi:10.1016/j.firesaf.2012.10.016
  • Gong SH, Sheng GM. Seismic performance of steel used in building structures. Build Struct. 1997;8:33–35.
  • Wu DQ, Ding Y, Su JS, et al. Investigation on low-cycle fatigue performance of high-strength steel bars including the effect of inelastic buckling. Eng Struct. 2022;272:114974. doi:10.1016/j.engstruct.2022.114974
  • Shi G, Gao Y, Wang X, et al. Energy-based low cycle fatigue analysis of low yield point steels. J Constr Steel Res. 2018;150:346–353. doi:10.1016/j.jcsr.2018.08.026
  • Song MS, Kong Y, Ran MW, et al. Cyclic stress-strain behavior and low cycle fatigue life of cast A356 alloys. Int J Fatigue. 2011;33(12):1600–1607. doi:10.1016/j.ijfatigue.2011.07.004
  • Callaghana MD, Humphriesb SR, Lawc M, et al. Energy-based approach for the evaluation of low cycle fatigue behaviour of 2.25Cr-1Mo steel at elevated temperature. Mater Sci En: A. 2010;527(21–22):5619–5623. doi:10.1016/j.msea.2010.05.011
  • Bai FM, Zhou HW, Liu XH, et al. Mashing behavior and microstructural change of quenched and tempered high-strength steel under low cycle fatigue. Acta Metall Sin-Engl. 2019;32:1346–1354. doi:10.1007/s40195-019-00893-4
  • Zhuang ML, Sun CZ, Dong B. Experimental and numerical investigations on seismic performance of HTRB630 high-strength steel bars reinforced concrete columns. Case Stud Constr Mat. 2022;17:e01185.
  • Gao L, Zuo G. Research on fiber model of high strength reinforced concrete column based on the constitutive model of reinforcing steel. Word Earthq Eng. 2021;37(03):129–137.
  • National standards of People’s Republic of China. Metallic mechanicals-tensile tests-part 1: test methods at room temperature GB / T228.1-2010. Beijing: China Standard Press; 2010.
  • National standards of People’s Republic of China. Steel for the reinforcement of concrete-Part 2: Hot rolled ribbed bars. GB/T 1499.2-2018. Beijing: China Standard Press; 2018.
  • Hua J, Yang Z, Zhou F, et al. Effects of exposure temperature on low–cycle fatigue properties of Q690 high–strength steel. J Constr Steel Res. 2022;190:107159.
  • Halford GR. The energy required for fatigue (plastic strain hystersis energy required for fatigue in ferrous and nonferrous metals). J Mater Sci. 1966;1:3–18.
  • Ramberg W. Description of Stress-Strain Curves by Three Parameters. National Advisory Committee for Aeronautics, Technical Note, 1943.
  • Eswara PN, Vogt D, Bidlingmatier T, et al. High temperature, low cycle fatigue behaviour of an aluminium alloy (Al-12Si-CuMgNi). Mater Sci Eng: A. 2000;276(1):283–287. doi:10.1016/S0921-5093(99)00492-X
  • Tong XY, Wang DJ, Xu H. Investigation of cyclic hysteresis energy in fatigue failure process. Int J Fatigue. 1989;11(5):353–359. doi:10.1016/0142-1123(89)90062-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.