53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Some aspects on grindability of feldspar ore using ball mill

, , &

References

  • Abdel-Khalek, N. A., A. Yehia, and S. S. Ibrahim. 1994. Technical note beneficiation of Egyptian feldspar for application in the glass and ceramics industries. Minerals Engineering 7 (9):1193–201. doi: 10.1016/0892-6875(94)90006-X.
  • Abouzeid, A., A. Seifelnassr, A. Ghorashi, Y. Mustafa, and A. F. M. Ibrahim. 2022. Comparative Studies on the grindability of some ore minerals. Journal of Petroleum and Mining Engineering 24 (1):66–71. doi: 10.21608/jpme.2022.127156.1120.
  • Ahmed, M. M., G. A. Ibrahim, A. M. E. Rizk, and N. A. Mahmoud. 2016. Reduce the iron content in Egyptian feldspar ore of Wadi Zirib for industrial applications. International Journal of Mining Engineering and Mineral Processing 5:25–34.
  • Austin, L. G., R. R. Klimpel, and P. T. Luckie. 1984. The process engineering of size reduction: Ball milling, 99–110. New York: SMEAIME.
  • Bwalya, M. M., M. H. Moys, G. J. Finnie, and F. K. Mulenga. 2014. Exploring ball size distribution in coal grinding mills. Powder Technology. 257:68–73. doi: 10.1016/j.powtec.2014.02.044.
  • Cayirli, S. 2018. Influences of operating parameters on dry ball mill performance. Physicochemical Problems of Mineral Processing 54 (3):751–62.
  • Chimwani, N., F. K. Mulenga, and D. Hildebrandt. 2015. Ball size distribution for the maximum production of a narrowly-sized mill product. Powder Technology. 284:12–8. doi: 10.1016/j.powtec.2015.06.037.
  • Cho, H., J. Kwon, K. Kim, and M. Mun. 2013. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technology 246:625–34. doi: 10.1016/j.powtec.2013.06.026.
  • Danha, G., N. Hlabangana, and E. Muzenda. 2018. Effect of ball and feed particle size distribution on the milling efficiency of a ball mill: An attainable region approach. South African Journal of Chemical Engineering 25 (1):79–84. doi: 10.1016/j.sajce.2018.02.001.
  • Deniz, V. 2011a. Comparison with some porous materials and the effects of powder filling on breakage parameters of diatomite in dry ball milling. Particulate Science and Technology 29 (5):428–40. doi: 10.1080/02726351.2010.509855.
  • Deniz, V. 2011b. Influence of interstitial filling on breakage kinetics of gypsum in ball mill. Advanced Powder Technology 22 (4):512–7. doi: 10.1016/j.apt.2010.07.004.
  • Deniz, V. 2012. The effects of ball filling and ball diameter on kinetic breakage parameters of barite powder. Advanced Powder Technology 23 (5):640–6. doi: 10.1016/j.apt.2011.07.006.
  • Deniz, V. 2016. An investigation on the effects of the ball filling on the breakage parameters of natural amorphous silica. Advanced Powder Technology 27 (4):1272–9. doi: 10.1016/j.apt.2016.04.017.
  • Deniz, V., and T. Onur. 2002. Investigation of the breakage kinetics of pumice samples as dependent on powder filling in a ball mill. International Journal of Mineral Processing 67 (1–4):71–8. doi: 10.1016/S0301-7516(02)00041-8.
  • Elbendari, A., A. Aleksandr, N. Nadezhda, and A. Anastasiya. 2020. Selective flotation of phosphorus-bearing ores. E3S Web of Conferences 192:02021. doi: 10.1051/e3sconf/202019202021.
  • El-Mofty, S. E., A. M. Elbendari, K. A. Abuhasel, and A. A. El-Midany. 2020. Ultrafine dry grinding of talc by planetary mill: Effects of operating conditions. Obogashchenie Rud 6:21–5. doi: 10.17580/or.2020.06.04.
  • Gao, M. W., and E. Forssberg. 1989. The effect of powder filling on selection and breakage functions in batch grinding. Powder Technology 59 (4):275–83. doi: 10.1016/0032-5910(89)80086-5.
  • Gupta, A., and D. S. Yan. 2006. Mineral processing design and operation- An introduction. Amsterdam: Elsevier B.V.
  • Hassan, E.-S R. E., F. Mutelet, N. A. Abdel-Khalek, M. A. Youssef, M. M. Abdallah, and A. H. El-Menshawy. 2020. Beneficiation and separation of Egyptian tantalite ore. Key Engineering Materials 835:208–13. doi: 10.4028/www.scientific.net/KEM.835.208.
  • Jankovic, A. 2003. Variables affecting the fine grinding of minerals using stirred mills. Minerals Engineering 16 (4):337–45. doi: 10.1016/S0892-6875(03)00007-4.
  • Katubilwa, F. M., M. H. Moys, D. Glasser, and D. Hildebrandt. 2011. An attainable region analysis of the effect of ball size on milling. Powder Technology. 210 (1):36–46. doi: 10.1016/j.powtec.2011.02.009.
  • Khumalo, N., D. Glasser, D. Hildebrandt, B. Hausberger, and S. Kauchali. 2006. The application of the attainable region analysis to comminution. Chemical Engineering Sciences. 61 (18):5969–80. doi: 10.1016/j.ces.2006.05.012.
  • Lameck, N. N. 2005. Effects of grinding media shapes on ball mill performances. Johannesburg, Gauteng, South Africa: University of the Witwatersrand http://hdl.handle.net/10539/1506.
  • Lorig, H. G., and H. Clarence. 2017. Mineral processing. Encyclopedia Britannica, November 17, 2006. Accessed September 9, 2023. https://www.britannica.com/technology/mineral-processing.
  • Magdalinovic, N., M. Trumic, and L. Andric. 2012. The optimal ball diameter in a mill. Physicochemical Problems of Mineral Processing. 48 (2):329–39.
  • Makokha, B., H. M. Moys, M. A. Muumbo, and J. R. Kiprono. 2012. Optimization of in-mill ball loading and slurry solids concentration in grinding of UG-2 ores: A statistical experimental design approach. Minerals Engineering 39:149–55. doi: 10.1016/j.mineng.2012.05.020.
  • Milan, T., N. Magdalinović, and G. Trumić. 2007. The model for optimal charge in the ball mill. Journal of Mining and Metallurgy A: Mining 43:19–31.
  • Mulenga, F. K., and M. H. Moys. 2014. Effects of slurry pool volume on milling efficiency. Powder Technology 256:428–35. doi: 10.1016/j.powtec.2014.02.013.
  • Öksüzoğlu, B., and M. Uçurum. 2016. An experimental study on the ultra-fine grinding of gypsum ore in a dry ball mill. Powder Technology. 291:186–92. doi: 10.1016/j.powtec.2015.12.027.
  • Petrakis, E., and K. Komnitsas. 2022. Effect of grinding media size on ferronickel slag ball milling efficiency and energy requirements using kinetics and attainable region approaches. Minerals 12 (2):184. https://www.researchgate.net/publication/358237016. doi: 10.3390/min12020184.
  • Petrakis, E., E. Stamboliadis, and K. Komnitsas. 2017. Evaluation of the relationship between energy input and particle size distribution in comminution with the use of piecewise regression analysis. Particulate Science and Technology 35 (4):479–89. doi: 10.1080/02726351.2016.1168894.
  • Santos, A. A., D. L. Machado, and S. M. Nascimento. 2022. Experimental study of clinker grinding in a ball mill and the behavior of the grinding media inside the equipment using DEM. Brazilian Journal of Chemical Engineering 40 (2):469–79. doi: 10.1007/s43153-022-00261-3.
  • Shoji, L. G., F. Austin, K. Smaila, P. Brame, and T. Luckie. 1982. Further studies of ball and powder filling effects in ball milling. Powder Technology 31 (1):121–6. doi: 10.1016/0032-5910(82)80013-2.
  • Tangsathitkulchai, C. 2003. Effects of slurry concentration and powder filling on the net mill power of a laboratory ball mill. Powder Technology 137 (3):131–8. doi: 10.1016/j.powtec.2003.08.048.
  • Umucu, Y., and V. Deniz. 2014. The evaluation of grinding behaviors of quartz and feldspar. Tojsat 4:60–7.
  • Yassin, K. E., M. Ahmed, M. G.-E. Khalifa, and A. A. Hagrass. 2023. Removing iron impurities from feldspar ore using dry magnetic separation (part one). Archives of Mining Sciences 68 (1):19–33.
  • Zhang, Y., Y. Hu, N. Sun, R. Liu, Z. Wang, L. Wang, and W. Sun. 2018. Systematic review of feldspar beneficiation and its comprehensive application. Minerals Engineering 128:141–52. doi: 10.1016/j.mineng.2018.08.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.