76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of rheology on the hydraulic conveying of red mud slurries through the pipeline for eco-friendly and safe disposal

ORCID Icon

References

  • Abedi, B., R. Mendes, and P. R. de Souza Mendes. 2019. Startup flow of yield-stress non-thixotropic and thixotropic materials in a tube. Journal of Petroleum Science and Engineering 174:437–45. doi: 10.1016/j.petrol.2018.11.047.
  • Abulnaga, B. 2002. Slurry systems handbook. New York: McGraw-Hill.
  • Alam, T., M. A. Islam, and Z. N. Farhat. 2016. Slurry erosion of pipeline steel: Effect of velocity and microstructure. Journal of Tribology 138 (2):021604. doi: 10.1115/1.4031599.
  • Alderman, N. J., and N. I. Heywood. 2004. Improving slurry viscosity and flow curve measurements. Chemical Engineering Progress 100 (4):27–32.
  • Ali Kokpinar, M., M. Gogus, B. M. A. Kökpınar, and M. Gög. 2001. Critical flow velocity in slurry transporting horizontal pipelines. Journal of Hydraulic Engineering 127 (9):763–71. doi: 10.1061/(ASCE)0733-9429(2001)127:9(763).
  • ASTM Standard. 2013. Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number). West Conshohocken, USA.
  • Azamathulla, H. M., and Z. Ahmad 2013. Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. Journal of Pipeline Systems Engineering and Practice 4 (2):131–7. doi: 10.1061/(asce)ps.1949-1204.0000123.
  • Bbosa, B., E. DelleCase, M. Volk, and E. Ozbayoglu. 2017. A comprehensive deposition velocity model for slurry transport in horizontal pipelines. Journal of Petroleum Exploration and Production Technology 7 (1):303–10. doi: 10.1007/s13202-016-0259-1.
  • Boger, D., P. J. Scales, and F. Sofra. 2006. Rheological Concepts 3.1. Paste and Thickened Tailings-A Guide, 25–37.
  • Bose, A. N., and K. S. Raju. 2001. Slurry transportation in Indian mines, Ministry of Mines, Govt. of India, 8–17.
  • Brown, N., and N. Heywood. 1991. Slurry handling: Design of solid-liquid systems. London: Springer Science & Business Media.
  • Burke, I. T., C. L. Peacock, C. L. Lockwood, D. I. Stewart, R. J. G. Mortimer, M. B. Ward, P. Renforth, K. Gruiz, and W. M. Mayes. 2013. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environmental Science & Technology 47 (12):6527–35. doi: 10.1021/es4010834.
  • Chhabra, R., and J. Richardson. 2008. Non-Newtonian flow and applied rheology: Engineering applications. Oxford, UK: Butterworth-Heinemann.
  • Chung, R. J., J. Jiang, C. Pang, B. Yu, R. Eadie, and D. Y. Li. 2021. Erosion-corrosion behaviour of steels used in slurry pipelines. Wear 477:203771. doi: 10.1016/j.wear.2021.203771.
  • Coker, E. H., and D. Van Peursem. 2018. The erosion of horizontal sand slurry pipelines resulting from inter-particle collision. Wear 400–401:74–81. doi: 10.1016/j.wear.2017.12.022.
  • Desouky, S. E. D. M, and M. N. Al-Awad. 1998. A new laminar-to-turbulent transition criterion for yield-pseudoplastic fluids. Journal of Petroleum Science and Engineering 19 (3-4):171–6. doi: 10.1016/S0920-4105(97)00044-2.
  • Durand, R. 1953. Basic relationships of the transportation of solids in pipes-experimental research. In Minnesota International Hydraulic Convention, 89–103.
  • Garcia, E., and J. Steffe. 1986. Comparison of friction factor equations for non-Newtonian fluids in pipe flow. Journal of Food Process Engineering 9 (2):93–120. doi: 10.1111/j.1745-4530.1986.tb00120.x.
  • Ghosh, S., E. K. Holwerda, R. S. Worthen, L. R. Lynd, and B. P. Epps. 2018. Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum. Biotechnology for Biofuels 11 (1):246. doi: 10.1186/s13068-018-1248-z.
  • Gillies, R. G., J. Schaan, R. J. Sumner, M. J. McKibben, and C. A. Shook. 2000. Deposition velocities for Newtonian slurries in turbulent flow. The Canadian Journal of Chemical Engineering 78 (4):704–8. doi: 10.1002/cjce.5450780412.
  • Hanks, R. 1978. Low Reynolds number turbulent pipeline flow of pseudo-homogeneous slurries, In Proceedings of the Hydrotransport (5):8–11.
  • Hanks, R. W., and B. L. Ricks. 1974. Laminar-Turbulent transition in flow of pseudoplastic fluids with yield stresses. Journal of Hydronautics 8 (4):163–6. doi: 10.2514/3.62992.
  • Herschel, W., and R. Bulkley. 1926. Measurement of consistency as applied to rubber-benzene solutions. Proceedings of American Society for Testing Materials 26 (2):621–33.
  • Hu, S. 2016. 4.2 Slurry Flows, Multiphase Flow Handbook. New York: CRC Press.
  • Indian Standard. 1963. IS 238-3: Methods of test for aggregates for concrete, Part 3: Specific gravity, density, voids, absorption and bulking. New Delhi: Indian Standard.
  • Javaheri, V., D. Porter, and V. T. Kuokkala. 2018. Slurry erosion of steel – Review of tests, mechanisms and materials. Wear 408-409:248–73. doi: 10.1016/j.wear.2018.05.010.
  • Keshavamurthy, R., B. E. Naveena, C. S. Ramesh, and M. R. Haseebuddin. 2021. Evaluation of slurry erosive wear performance of plasma-sprayed flyash-TiO2 composite coatings. Journal of Bio- and Tribo-Corrosion 7 (3):1–16. doi: 10.1007/s40735-021-00525-4.
  • Kumar, K., A. Kumar, and V. Singh. 2019. Optimization of process parameters for erosion wear in slurry pipeline. In Advances in Engineering Design, 131–40. Singapore: Springer. doi: 10.1007/978-981-13-6469-3_12.
  • Leong, Y. K., J. Teo, E. Teh, J. Smith, J. Widjaja, J. X. Lee, A. Fourie, M. Fahey, and R. Chen. 2012. Controlling attractive interparticle forces via small anionic and cationic additives in kaolin clay slurries. Chemical Engineering Research and Design 90 (5):658–66. doi: 10.1016/j.cherd.2011.09.002.
  • Mansouri, A., H. Arabnejad, S. A. Shirazi, and B. S. McLaury. 2014. A combined CFD/experimental methodology for erosion prediction. Wear 332-333:1090–7. doi: 10.1016/j.wear.2014.11.025.
  • Mayes, W. M., I. T. Burke, H. I. Gomes, D. Anton, M. Molnár, V. Feigl, and E. Ujaczki. 2016. Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. Journal of Sustainable Metallurgy 2 (4):332–43. doi: 10.1007/S40831-016-0050-Z/TABLES/4.
  • Michaelides, E., C. T. Crowe, and J. D. Schwarzkopf. 2016. Multiphase flow handbook. New York: CRC Press.
  • Miedema, S. A. 2014. A head loss model for homogeneous slurry transport for medium sized particles. Journal of Hydrology and Hydromechanics 63 (1):1–12. doi: 10.1515/johh-2015-0005.
  • Miedema, S. A., and R. C. Ramsdell. 2020. Slurry transport fundamentals, a historical overview & the delft head loss & limit deposit velocity framework-2nd edition. World Dredging 52:30–5.
  • Miedema, S. A., and R. C. Ramsdell. 2015. The Limit Deposit Velocity model, a new approach. Journal of Hydrology and Hydromechanics 63 (4):273–86. doi: 10.1515/johh-2015-0034.
  • Miller, J. 1993. The Miller Number-A Review. Philadelphia: ASTM International.
  • Miller, J. 1987. Slurry erosion: Uses, applications, and test methods: A symposium. In: ASTM International 946.
  • Mishra, D. P., and S. K. Das. 2014. Comprehensive characterization of pond ash and pond ash slurries for hydraulic stowing in underground coal mines. Particulate Science and Technology 32 (5):456–65. doi: 10.1080/02726351.2014.894162.
  • Mitchell, S., and T. Myers. 2007. The laminar-turbulent transition of yield stress fluids in large pipes. Mathematics in Industry Study Group, University of Witwatersrand :1–19.
  • More, S. R., D. V. Bhatt, and J. V. Menghani. 2017. Recent research status on erosion wear - An overview. Materials Today: Proceedings 4 (2):257–66. doi: 10.1016/j.matpr.2017.01.020.
  • More, S. R., S. P. Ingole, D. V. Bhatt, and J. V. Menghani. 2019. The study of slurry erosion wear behaviour of coal bottom ash slurry handling pipeline. In 148th Annual Meeting & Exhibition Supplemental Proceedings, 697–710. Springer International Publishing. doi: 10.1007/978-3-030-05861-6_68.
  • Moreira, V., F. Silva, V. Quintao, F. Siqueira, F. Kaelber, S. Meinhold, J. Schenk, and A. Costa. 2018. Abrasiveness of mining slurries: Influence of the morphology, concentration of slurries, mean grain size and nature of the abrasive particles. In 3rd International Brazilian Conference on Tribology.
  • Nguyen, Q. D., and D. V. Boger. 1992. Measuring the flow properties of yield stress fluids. Annual Review of Fluid Mechanics 24 (1):47–88. doi: 10.1146/annurev.fl.24.010192.000403.
  • Okita, R., Y. Zhang, B. S. McLaury, and S. A. Shirazi. 2012. Experimental and computational investigations to evaluate the effects of fluid viscosity and particle size on erosion damage. Journal of Fluids Engineering 134 (6): 061301 doi: 10.1115/1.4005683.
  • Prasad, V., S. P. Mehrotra, and P. Thareja. 2022. Rheological characteristics of concentrated Indian coal ash slurries and flow through pipelines. Construction and Building Materials 361:129624. doi: 10.2139/ssrn.4140976.
  • Prasad, V., S. P. Mehrotra, and P. Thareja. 2019. Influence of additives, particle size, and incorporation of coarse particles on the shear rheology of concentrated Indian coal ash slurries. Asia-Pacific Journal of Chemical Engineering 14 (5):e2358. doi: 10.1002/apj.2358.
  • Rai, S., K. L. Wasewar, and A. Agnihotri. 2017. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA 35 (6):563–80. doi: 10.1177/0734242X17696147.
  • Recknagle, K. P., and Y. Onishi. 1999. Transport of Tank 241-SY-101 Waste Slurry : Effects of Dilution and Temperature on Critical Pipeline Velocity. Pacific Northwest National Lab., No. PNNL-12217.
  • Sadighian, A. 2016. Investigating key parameters affecting slurry pipeline erosion.
  • Samal, S., A. K. Ray, and A. Bandopadhyay. 2013. Proposal for resources, utilization and processes of red mud in India—A review. International Journal of Mineral Processing 118:43–55. doi: 10.1016/j.minpro.2012.11.001.
  • Sánchez-Juny, M., A. Triadú, A. Paterson, and E. Bladé. 2021. Determination of limit deposition velocity and viscosity in waste brines transported in pipelines. Journal of Pipeline Systems Engineering and Practice 12 (3):04021023. doi: 10.1061/(asce)ps.1949-1204.0000560.
  • Santos De Oliveira, I. S., A. Van Den Noort, J. T. Padding, W. K. Den Otter, and W. J. Briels. 2011. Alignment of particles in sheared viscoelastic fluids. The Journal of Chemical Physics 135 (10):104902. doi: 10.1063/1.3633701.
  • Schaan, J., R. J. Sumner, R. G. Gillies, and C. A. Shook. 2000. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. The Canadian Journal of Chemical Engineering 78 (4):717–25. doi: 10.1002/cjce.5450780414.
  • Senapati, P., B. Mishra, A. Sahu, and V. Kumar. 2011. Effective composition of high concentration fly ash-bottom ash mixture slurry for efficient disposal through pipelines. Applied Rheology 21 (2):23480. doi: 10.3933/ApplRheol-21-23480.
  • Shayya, W. H., S. S. Sablani, and A. Campo. 2005. Explicit calculation of the friction factor for non-Newtonian fluids using artificial neural networks. Developments in Chemical Engineering and Mineral Processing 13 (1-2):5–20. doi: 10.1002/apj.5500130102.
  • Shook, C. A., and M. C. Roco. 1991. Slurry flow: Principles and practice. Boston, USA: Butterworth-Heinemann.
  • Sinevic, V., R. Kuboi, and A. W. Nienow. 1986. Power numbers, numbers vortices in viscous Newtonian and non-Newtonian fluids. Chemical Engineering Science 41 (11):2915–23. doi: 10.1016/0009-2509(86)80022-7.
  • Singh, V., S. Kumar, and S. K. Mohapatra. 2019. Modelling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics 12 (3):679–87. doi: 10.29252/jafm.12.03.29199.
  • Sinha, S. L., S. K. Dewangan, and A. Sharma. 2017. A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral − slurry. Particulate Science and Technology 35 (1):103–18. doi: 10.1080/02726351.2015.1131792.
  • Slatter, P. T. 2007. The hydraulic transportation of thickened sludges. Water SA 30 (5):614–6. doi: 10.4314/wsa.v30i5.5169.
  • Sochi, T. 2011. Slip at Fluid-Solid Interface. Polymer Reviews 51 (4):309–40. doi: 10.1080/15583724.2011.615961.
  • Souza Pinto, T. C., D. Moraes Junior, P. T. Slatter, and L. S. Leal Filho. 2014. Modelling the critical velocity for heterogeneous flow of mineral slurries. International Journal of Multiphase Flow 65:31–7. doi: 10.1016/j.ijmultiphaseflow.2014.05.013.
  • Sparrow, E. M., W. D. Munro, and V. K. Jonsson. 1974. Instability of the flow between rotating cylinders: The wide gap problem. Journal of Fluid Mechanics 20 (1):35–46. doi: 10.1017/S0022112064001008.
  • Sun, L., X. Zhang, W. Tan, M. Zhu, R. Liu, and C. Li. 2010. Rheology of pyrite slurry and its dispersant for the biooxidation process. Hydrometallurgy 104 (2):178–85. doi: 10.1016/j.hydromet.2010.06.003.
  • Swamee, P. K., and N. Aggarwal. 2011. Explicit equations for laminar flow of herschel-bulkley fluids. The Canadian Journal of Chemical Engineering 89 (6):1426–33. doi: 10.1002/cjce.20484.
  • Torrance, B. 1963. Friction factors for turbulent non-Newtonian fluid flow in circular pipes. South African Mechanical Engineering 13:89–91.
  • Turian, R. M., F. L. Hsu, and T. W. Ma. 1987. Estimation of the critical velocity in pipeline flow of slurries. Powder Technology 51 (1):35–47. doi: 10.1016/0032-5910(87)80038-4.
  • Wang, S. H., J. Jiang, and M. M. Stack. 2015. Methodology development for investigation of slurry abrasion corrosion by integrating an electrochemical cell to a Miller tester. Journal of Bio- and Tribo-Corrosion 1 (2):1–9. doi: 10.1007/s40735-015-0009-9.
  • Wasp, E., J. Kenny, and R. Gandhi. 1977. Solid-liquid flow: Slurry pipeline transportation. Bulk Material Handling Series, Trans Tech Publications 1 (4): 9–16
  • Wilson, K., G. Addie, A. Sellgren, and R. Clift. 2006. Slurry transport using centrifugal pumps. New York: Springer Science & Business Media.
  • Wu, H., X. Liang, and Z. Deng. 2013. Numerical simulation on typical parts erosion of the oil pressure pipeline. Thermal Science 17 (5):1349–53. doi: 10.2298/TSCI1305349W.
  • Wu, J. H., J. Z. Liu, Y. J. Yu, R. K. Wang, J. H. Zhou, and K. F. Cen. 2015. Improving slurryability, rheology, and stability of slurry fuel from blending petroleum coke with lignite. Petroleum Science 12 (1):157–69. doi: 10.1007/S12182-014-0008-3/TABLES/6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.