61
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic removal of toxic anionic reactive red dye Me4BL (RRME4BL) from aqueous media using chemically synthesised nano-adsorbents (ZnO, CuO, NiO and CoO); equilibrium, kinetics and thermodynamic studies

, , , , , , , & show all
Pages 596-626 | Received 25 Dec 2023, Accepted 25 Mar 2024, Published online: 08 Apr 2024

References

  • Li J, Wang Q, Han Y, et al. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol. 2023;16(1):1–26. doi:10.1186/s13045-022-01396-z
  • Bora T, Dutta J. Applications of nanotechnology in wastewater treatment—a review. J Nanosci Nanotechnol. 2014;14(1):613–626. doi:10.1166/jnn.2014.8898
  • Noreen S, Bhatti HN, Iqbal M, et al. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int J Biol Macromol 2020;147:439–452. doi:10.1016/j.ijbiomac.2019.12.257
  • Kataria N, Garg V, Jain M, et al. Preparation, characterization and potential use of flower shaped zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv Powder Technol. 2016;27(4):1180–1188.
  • Liu H, Zhang M, Meng F, et al. Polysaccharide-based gold nanomaterials: synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym. 2023;321:121284.
  • Marín-Muñiz JL, Herazo S, C L, et al. Treatment wetlands in Mexico for control of wastewater contaminants: a review of experiences during the last twenty-two years. Processes. 2023;11(2):359. doi:10.3390/pr11020359
  • Pattnaik A, Sahu J, Poonia AK, et al. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem Eng Res Des. 2023;190:667–686.
  • Deb A, Kanmani M, Debnath A, et al. Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters. Ultrason Sonochem. 2019;54:290–301. doi:10.1016/j.ultsonch.2019.01.028
  • Lach CE, Pauli CS, Coan AS, et al. Investigating the process of electrocoagulation in the removal of azo dye from synthetic textile effluents and the effects of acute toxicity on Daphnia magna test organisms. J Water Process Eng. 2022;45:102485. doi:10.1016/j.jwpe.2021.102485
  • Narwal N, Katyal D, Kataria N, et al. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. Chemosphere. 2023;341:139945.
  • Semerjian L, Ayoub G. High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv Environ Res. 2003;7(2):389–403. doi:10.1016/S1093-0191(02)00009-6
  • Noreen S, Khalid U, Ibrahim SM, et al. Zno, MgO and FeO adsorption efficiencies for direct sky Blue dye: equilibrium, kinetics and thermodynamics studies. J Mater Res Technol. 2020;9(3):5881–5893. doi:10.1016/j.jmrt.2020.03.115
  • Kuang Y, Zhang X, Zhou S. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water. 2020;12(2):587. doi:10.3390/w12020587
  • Noreen S, Bhatti HN, Nausheen S, et al. Batch and fixed bed adsorption study for the removal of Drimarine Black CL-B dye from aqueous solution using a lignocellulosic waste: a cost affective adsorbent. Ind Crops Prod. 2013;50:568–579. doi:10.1016/j.indcrop.2013.07.065
  • Monsef Khoshhesab Z, Gonbadi K, Rezaei Behbehani G. Removal of reactive black 8 dye from aqueous solutions using zinc oxide nanoparticles: investigation of adsorption parameters. Desalin Water Treat. 2015;56(6):1558–1565. doi:10.1080/19443994.2014.967304
  • Jiang R, Zhu H-Y, Fu Y-Q, et al. Adsorptive removal of anionic azo dye by Al3+-modified magnetic biochar obtained from low pyrolysis temperatures of chitosan. Environ Sci Pollut Res. 2023;30(15):44985–44998. doi:10.1007/s11356-023-25439-1
  • Liu J, Jiang J, Meng Y, et al. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: a review. J Hazard Mater 2020;388:122026. doi:10.1016/j.jhazmat.2020.122026
  • Gautam RK, Gautam PK, Chattopadhyaya M, et al. Adsorption of Alizarin Red S onto biosorbent of Lantana camara: kinetic, equilibrium modeling and thermodynamic studies. Proc Natl Acad Sci., India Sect A: Phys Sci. 2014;84:495–504. doi:10.1007/s40010-014-0154-4
  • Gautam RK, Gautam PK, Banerjee S, et al. Removal of tartrazine by activated carbon biosorbents of Lantana camara: kinetics, equilibrium modeling and spectroscopic analysis. J Environ Chem Eng. 2015;3(1):79–88. doi:10.1016/j.jece.2014.11.026
  • Gautam RK, Gautam PK, Banerjee S, et al. Removal of Ni (II) by magnetic nanoparticles. J Mol Liq. 2015;204:60–69. doi:10.1016/j.molliq.2015.01.038
  • Gautam RK, Tiwari I. Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: application in real water samples, recycling and reuse of nanosorbents. Chemosphere. 2020;245:125553. doi:10.1016/j.chemosphere.2019.125553
  • Kumar A, Patra C, Rajendran HK, et al. Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: synthesis, characterization and phytotoxicity studies. Chemosphere. 2022;307:135806. doi:10.1016/j.chemosphere.2022.135806
  • Kumar A, Patra C, Kumar S, et al. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res 2022;206:112604. doi:10.1016/j.envres.2021.112604
  • Kumar A, Jeyabalan J, Patra CC, et al. Fabrication of a novel bio-polymer adsorbent with high adsorptive capacity towards organic dyes. Ind Crops Prod. 2023;203:117166. doi:10.1016/j.indcrop.2023.117166
  • Varadharaj VP, Ramesh G, Kumar A, et al. Synthesis, characterization, and application of oxidant-modified biochar prepared from sawdust for sequestration of basic fuchsin: isotherm, kinetics, and toxicity studies. Biomass Convers Biorefinery. 2023;13(11):1–12.
  • Gautam RK, Rawat V, Banerjee S, et al. Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J Mol Liq. 2015;212:227–236. doi:10.1016/j.molliq.2015.09.006
  • Kumar SS, Venkateswarlu P, Rao VR, et al. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett. 2013;3(1):1–6. doi:10.1186/2228-5326-3-1
  • Latif S, Liaqat A, Imran M, et al. Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ Res 2023;216:114500. doi:10.1016/j.envres.2022.114500
  • Ghorbani HR, Mehr FP, Pazoki H, et al. Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 2015;31(2):1219–1221. doi:10.13005/ojc/310281
  • Ho Y-S, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–465. doi:10.1016/S0032-9592(98)00112-5
  • Yuh-Shan H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics. 2004;59(1):171–177. doi:10.1023/B:SCIE.0000013305.99473.cf
  • Mall I, Srivastava V, Kumar G, et al. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf, A. 2006;278(1-3):175–187. doi:10.1016/j.colsurfa.2005.12.017
  • Ho Y, McKay G. The sorption of lead (II) ions on peat. Water Res 1999;33(2):578–584. doi:10.1016/S0043-1354(98)00207-3
  • Noreen S, Mustafa G, Ibrahim SM, et al. Iron oxide (Fe2O3) prepared via green route and adsorption efficiency evaluation for an anionic dye: kinetics, isotherms and thermodynamics studies. J Mater Res Technol. 2020;9:4206–4217.
  • Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanitary Eng Division. 1963;89(2):31–59. doi:10.1061/JSEDAI.0000430
  • Freundlich H, Seal A. Ueber einige Eigenschaften des Rhodanions. Z Chem Ind Kolloide. 1912;11(6):257–263. doi:10.1007/BF01465607
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40(9):1361–1403. doi:10.1021/ja02242a004
  • Harkins WD, Jura G. Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J Am Chem Soc 1944;66(8):1366–1373. doi:10.1021/ja01236a048
  • Temkin M. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS. 1940;12:327–356.
  • Dubinin M, Raduskhevich L. Proceedings of the academy of sciences of the USSR. Phys Chem. 1947;55:327–329.
  • Sheshdeh RK, Nikou MRK, Badii K, et al. Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. J Taiwan Inst Chem Eng. 2014;45(4):1792–1802. doi:10.1016/j.jtice.2014.02.020
  • Shoukat S, Bhatti HN, Iqbal M, et al. Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous Mesoporous Mater. 2017;239:180–189. doi:10.1016/j.micromeso.2016.10.004
  • Tahir N, Bhatti HN, Iqbal M, et al. Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 2017;94:210–220. doi:10.1016/j.ijbiomac.2016.10.013
  • Hayati B, Mahmoodi NM, Maleki A. Dendrimer–titania nanocomposite: synthesis and dye-removal capacity. Res Chem Intermed. 2015;41:3743–3757. doi:10.1007/s11164-013-1486-4
  • Mustafa G, Tahir H, Sultan M, et al. Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. Afr J Biotechnol. 2013;12(47):6650–6660. doi:10.5897/AJB2013.13058
  • El Kassimi A, Achour Y, El Himri M, et al. Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: experimental and theoretical study using DFT method. Int J Environ Anal Chem. 2023;103(6):1223–1244. doi:10.1080/03067319.2021.1873306
  • Rubangakene NO, Elwardany A, Fujii M, et al. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem Eng Res Des. 2023;189:636–651. doi:10.1016/j.cherd.2022.12.003
  • Reck IM, Paixao RM, Bergamasco R, et al. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod. 2018;171:85–97. doi:10.1016/j.jclepro.2017.09.237
  • Zulfiqar R, Munir R, Bashir MZ, et al. Synthesis of polymeric sunscreen photocatalyst ZnO2, CuO2, PbO2, and CdO2 using ethylene glycol for reactive blue Dye removal from textile waste water. Catal Surv Asia. 2023;1:1–27.
  • Soltani A, Faramarzi M, Parsa M, et al. A review on adsorbent parameters for removal of dye products from industrial wastewater. Water Quality Res J. 2021;56(4):181–193. doi:10.2166/wqrj.2021.023
  • Serban GV, Iancu VI, Dinu C, et al. Removal efficiency and adsorption kinetics of methyl orange from wastewater by commercial activated carbon. Sustainability. 2023;15(17):12939. doi:10.3390/su151712939
  • Mohammadi A, Daemi H, Barikani M. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int J Biol Macromol 2014;69:447–455. doi:10.1016/j.ijbiomac.2014.05.042
  • Zafar L, Khan A, Kamran U, et al. Eucalyptus (camaldulensis) bark-based composites for efficient basic blue 41 dye biosorption from aqueous stream: kinetics, isothermal, and thermodynamic studies. Surfaces and Interfaces. 2022;31:101897. doi:10.1016/j.surfin.2022.101897
  • Ali I, AL-Othman ZA, Alwarthan A. Molecular uptake of Congo red dye from water on iron composite nano particles. J Mol Liq. 2016;224:171–176. doi:10.1016/j.molliq.2016.09.108
  • Konicki W, Sibera D, Mijowska E, et al. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interface Sci. 2013;398:152–160. doi:10.1016/j.jcis.2013.02.021
  • Rangabhashiyam S, Anu N, Nandagopal MG, et al. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Env Chem Eng. 2014;2(1):398–414. doi:10.1016/j.jece.2014.01.014
  • Chang Z, Chen X, Peng Y. The adsorption behavior of surfactants on mineral surfaces in the presence of electrolytes–A critical review. Miner Eng. 2018;121:66–76. doi:10.1016/j.mineng.2018.03.002
  • Exley JM, Hunter TN, Pugh T, et al. Influence of flake size and electrolyte conditions on graphene oxide adsorption of ionic dyes. Powder Technol. 2023;421:118387. doi:10.1016/j.powtec.2023.118387
  • Shabir M. Effect of electrolytes on the adsorption of nitrite and nitrate from aqueous solutions by activated carbon. J Appl Sci Environ Manage. 2010;14(3). doi:10.4314/jasem.v14i3.61448
  • Taj MB, Noor S, Javed T, et al. Effect of nonionic surfactant on micellization thermodynamics and spectroscopic profile of dye-surfactant aggregation. J Dispers Sci Technol. 2023;44(4):669–678. doi:10.1080/01932691.2021.1960169
  • Munir R, Ali K, Naqvi SAZ, et al. Biosynthesis of leucaena leucocephala leaf mediated ZnO, CuO, MnO2, and MgO based nano-adsorbents for reactive golden yellow-145 (RY-145) and direct Red-31 (DR-31) dye removal from textile wastewater to reuse in agricultural purpose. Sep. Purif. Technol. 2023;306:122527. doi:10.1016/j.seppur.2022.122527
  • Ballav N, Debnath S, Pillay K, et al. Efficient removal of reactive black from aqueous solution using polyaniline coated ligno-cellulose composite as a potential adsorbent. J Mol Liq. 2015;209:387–396. doi:10.1016/j.molliq.2015.05.051
  • Ansari R, Mosayebzadeh Z. Removal of Eosin Y, an anionic dye, from aqueous solutions using conducting electroactive polymers. 2010.
  • Xiong G, Pal U, Serrano J, et al. Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi C. 2006;3(10):3577–3581. doi:10.1002/pssc.200672164
  • Labhane P, Huse V, Patle L, et al. Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study. J Mater Sci Chem Eng. 2015;03(07):39–51. doi:10.4236/msce.2015.37005
  • Radhakrishnan AA, Beena BB. Structural and optical absorption analysis of CuO nanoparticles. Indian J. Adv. Chem. Sci. 2014;2(2):158–161.
  • Rahdar A, Aliahmad M, Azizi Y. NiO nanoparticles: synthesis and characterization. 2015.
  • Shafqaat U, Munir R, Albasher G, et al. Synthesis and characterization of heavy metal-based hydroxyapatite for batch adsorption of turquoise blue dye: equilibrium, kinetic, and thermodynamic studies. Water Practice & Technology. 2024;19(2):435–452.
  • Saranyaadevi K, Subha V, Ravindran R, et al. Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J Chem Tech Res. 2014;6(10):4533–4541.
  • Okpara EC, Ogunjinmi OE, Oyewo OA, et al. Green synthesis of copper oxide nanoparticles using extracts of Solanum macrocarpon fruit and their redox responses on SPAu electrode. Heliyon. 2021;7(12):e08571. doi:10.1016/j.heliyon.2021.e08571
  • Mohan AC, Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technology. 2016;24:761–766. doi:10.1016/j.protcy.2016.05.078
  • Dharmaraj N, Prabu P, Nagarajan S, et al. Synthesis of nickel oxide nanoparticles using nickel acetate and poly (vinyl acetate) precursor. Materials Science and Engineering: B. 2006;128(1-3):111–114. doi:10.1016/j.mseb.2005.11.021
  • Ragunath L, Suresh J, Sankaran M, et al. Synthesis and characterization of copper oxide nanoparticles using rambutan peel extract via greener route. Rasayan Journal of Chemistry. 2021;14(4):2660–2665. doi:10.31788/RJC.2021.1446512
  • Alwan RM, Kadhim QA, Sahan KM, et al. Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanoscience and Nanotechnology. 2015;5(1):1–6.
  • Govindasamy R, Raja V, Singh S, et al. Green synthesis and characterization of cobalt oxide nanoparticles using psidium guajava leaves extracts and their photocatalytic and biological activities. Molecules. 2022;27(17):5646. doi:10.3390/molecules27175646
  • Habtemariam AB, Oumer M. Plant extract mediated synthesis of nickel oxide nanoparticles. Mater Int. 2020;2(2):205–209. doi:10.33263/Materials22.205209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.