52
Views
0
CrossRef citations to date
0
Altmetric
Articles

Number sense predicts arithmetic competence in young Chinese children: the role of visual spatial skills and inhibitory control

ORCID Icon, , &
Pages 559-573 | Received 06 Sep 2023, Accepted 21 Mar 2024, Published online: 17 Apr 2024

References

  • Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(26). doi:10.1186/1744-9081-9-26
  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222. doi:10.1016/J.COGNITION.2004.09.011
  • Björklund, C., Kullberg, A., & Kempe, U. R. (2019). Structuring versus counting. Critical ways of using fingers in subtraction. ZDM Mathematics Education, 51(1), 13–24. doi:10.1007/s11858-018-0962-0
  • Caldera, Y. M., Culp, A. M., O’Brien, M., Truglio, R. T., Alvarez, M., & Huston, A. C. (1999). Children’s play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23(4), 855–872. doi:10.1080/016502599383577
  • Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28(2), 595–616. doi:10.1207/s15326942dn2802_3
  • Casey, B. M., & Bobb, B. (2003). The power of block building. Teaching Children Mathematics, 10, 98–102. doi:10.5951/TCM.10.2.0098
  • Chen, Q. X., & Li, J. G. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. doi:10.1016/j.actpsy.2014.01.016
  • Cheng, D., Xiao, Q., Chen, Q., Cui, J., & Zhou, X. (2018). Dyslexia and dyscalculia are characterized by common visual perception deficits. Developmental Neuropsychology, 43, 497–507. doi:10.1080/87565641.2018.1481068
  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. doi:10.1016/0010-0277(92)90049-n
  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. doi:10.1016/j.neuron.2007.10.004
  • Dehaene, S., Izard, V., & Piazza, M. (2005). Control over non-numerical parameters in numerosity experiments. Unpublished manuscript, available on www.unicog.org
  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 1–10. doi:10.3389/fnhum.2012.00068
  • Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116, 251–266. doi:10.1016/j.cognition.2010.05.007
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149
  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. doi:10.1016/j.jecp.2014.01.013
  • Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7(2), 74–79. doi:10.1111/cdep.12019
  • Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. doi:10.1111/desc.12013
  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65. doi:10.1016/s1364-6613(99)01424-2
  • Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child & Adolescent Psychiatry, 9(S2), S11–S16. doi:10.1007/s007870070004
  • Geary, D. C., Fan, L., & Bowthomas, C. C. (1992). Numerical cognition - loci of ability differences comparing children from China and the United States. Psychological Science, 3(3), 180–185. doi:10.1111/j.1467-9280.1992.tb00023.x
  • Gebuis, T., Cohen, K. R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35. doi:10.1016/j.actpsy.2016.09.003
  • Gerstadt, C. L., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action: performance of children 3 1/2-7 years old on a stroop-like day-night test. Cognition, 53(2), 129–153. doi:10.1016/0010-0277(94)90068-X
  • Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406.
  • Ginsburg, H., & Baroody, A. (1990). A test of early MathematicsAbility (2nd ed.). Austin, TX: PRO-ED.
  • Ginsburg, H. P. (1977). Children’s arithmetic. New York, NY: D. Van Nostrand.
  • Göbel, S. M., Watson, S. E., Lervag, A., & Hulme, C. (2014). Children's arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798. doi:10.1177/0956797613516471
  • Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612.
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. doi:10.1037/a0012682
  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. doi:10.1038/nature07246
  • Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00685
  • Li, D. F., Zhang, X. J., & Zhang, L. (2023). What skills could distinguish developmental dyscalculia and typically developing children: Evidence from a 2-year longitudinal screening. Journal of Learning Disabilities, 56(4), 257–277. doi:10.1177/00222194221099674
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300. doi:10.1111/j.1467-7687.2011.01080.x
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex-differences in spatial ability - A meta-analysis. Child Development, 56(6), 1479–1498. doi:10.1111/j.1467-8624.1985.tb00213.x
  • Lonnemann, J., Muller, C., Buttner, G., & Hasselhorn, M. (2019). The influence of visual-spatial skills on the association between processing of nonsymbolic numerical magnitude and number word sequence skills. Journal of Experimental Child Psychology, 178, 184–197. doi:10.1016/j.jecp.2018.09.018
  • Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proc. Natl. Acad. Sci. U.S.A, 109, 18737–18742. doi:10.1073/pnas.1207212109
  • Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261. doi:10.1016/j.cognition.2011.07.009
  • Morrissey, K. R., Liu, M., Kang, J., Hallett, D., & Wang, Q. (2016). Cross-cultural and intra-cultural differences in fingercounting habits and number magnitude processing: Embodied numerosity in Canadian and Chinese university students. Journal of Numerical Cognition, 2(1), 1–19. doi:10.5964/jnc.v2i1.14
  • Murphy, M. M., Mazzocco, M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40, 458–478. doi:10.1177/00222194070400050901
  • Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52, 431–462. doi:10.1007/BF02294365
  • Muthén, L., & Muthén, B. (1998–2012). Mplus user's guide. Los Angeles, CA: Muthén & Muthén.
  • Newcomber, P. (2001). Diagnostic achievement battery (3rd ed.). Austin, TX: Pro Ed.
  • Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108, 455–473. doi:10.1037/edu0000079
  • Peng, P., Wang, C., & Namkung, J. (2018). Understanding the cognition related to mathematics difficulties: A meta-analysis on the cognitive deficit profiles and the Bottleneck theory. Review of Educational Research, 88(3), 434–476. doi:3102/0034654317753350
  • Pica, P., Lemer, C., Izard, W., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503. doi:10.1126/science.1102085
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. doi:10.3758/BRM.40.3.879
  • Rebholz, F., Golle, J., & Moeller, K. (2022). The association of basic numerical abilities and math achievement: The mediating role of visuospatial and arithmetical abilities. Quarterly Journal of Experimental Psychology, 75(5), 841–853. doi:10.1177/17470218211040060
  • Resnick, L. B. (1983). A developmental theory of number understanding. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 109–151). New York, NY: Academic Press.
  • Riley, M. S., & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5, 49–101. doi:10.1207/sl532690xci0501_2
  • Rodic, M., Zhou, X., Tikhomirova, T., Wei, W., Malykh, S., Ismatulina, V., … Kovas, Y. (2015). Cross-cultural investigation into cognitive underpinnings of individual differences in early arithmetic. Developmental Science, 18(1), 165–174. doi:10.1111/desc.12204
  • Romano, E., Babchishin, L., Pagani, L. S., & Kohen, D. (2010). School readiness and later achievement: Replication and extension using a nationwide Canadian survey. Developmental Psychology, 46(5), 995–1007. doi:10.1037/a0018880
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), 1–16. doi:10.1111/desc.12372
  • Schwenk, C., Sasanguie, D., Kuhn, J. T., Kempe, S., Doebler, P., & Holling, H. (2017). (Non-) symbolic magnitude processing in children with mathematical difficulties: A meta-analysis. Research in Developmental Disabilities, 64, 152–167. doi:10.1016/j.ridd.2017.03.003
  • Sella, F., Sader, E., Lolliot, S., & Cohen Kadosh, R. (2016). Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(9), 1458–1472. doi:10.1037/xlm0000249
  • Soltész, F., Szűcs, D., & Szűcs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 13. doi:10.1186/1744-9081-6-13
  • Tobin, J., Hsueh, Y., & Karasawa, M. (2009). Preschool in three cultures revisited: China, Japan, and the United States. Chicago, IL: University of Chicago.
  • Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44, 521–532. doi:10.1177/0022219410387302
  • Toll, S. W. M., Van Viersen, S., Krodbergen, E. H., & Van Luit, J. E. H. (2015). The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differenced, 38, 10–17. doi:10.1016/j.linclif.2014.12.006
  • Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51. doi:10.1016/j.jecp.2014.02.012
  • Wagner, J. B., & Johnson, S. C. (2011). An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition, 119, 10–22. doi:10.1016/j.cognition.2010.11.014
  • Wechsler, D. (2002). The Wechsler preschool and primary scale of intelligence. San Antonio, TX: The Psychological Corporation.
  • Wechsler, D. (2012). Wechsler intelligence scale for children. San Antonio, TX: The Psychological Corporation.
  • Woodcock, R. W., Mcgrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Rolling Meadows, IL: Riverside Publishing.
  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6 mouth old infants. Cognition, 106(25), 10382–10385. doi:10.1073/pnas.0812142106
  • Zhang, X., Hu, B. Y., Ren, L. X., & Fan, X. T. (2017). Pathways to reading, mathematics, and science: Examining domain-general correlates in young Chinese children. Contemporary Educational Psychology, 51, 366–377. doi:10.1016/j.cedpsych.2017.09.004
  • Zhang, X., & Lin, D. (2015). Pathways to arithmetic: The role of visual-spatial and language skills in written arithmetic, arithmetic word problems, and nonsymbolic arithmetic. Contemporary Educational Psychology, 41, 188–197. doi:10.1016/j.cedpsych.2015.01.005
  • Zhang, X., & Lin, D. (2018). Cognitive precursors of word Reading versus arithmetic competencies in young Chinese children. Early Childhood Research Quarterly, 42, 55–65. doi:10.1016/j.ecresq.2017.08.006
  • Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition, 35(3), 464–470. doi:10.3758/bf03193286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.