Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 11
219
Views
1
CrossRef citations to date
0
Altmetric
Articles

Motion behaviour of solid inclusions at the steel–slag interface in high-Al steel

, , , &
Pages 1749-1757 | Received 08 May 2023, Accepted 28 Sep 2023, Published online: 29 Oct 2023

References

  • Silva Ce, da ALV. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J Mater Res Technol. 2019;8(2):2408–2422. doi:10.1016/j.jmrt.2019.01.009
  • Gu C, Liu W, Lian J, et al. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int J Miner Metall Mater. 2021;28(5):826–834. doi:10.1007/s12613-020-2223-9
  • Abraham S, Bodnar R, Raines J, et al. Inclusion engineering and metallurgy of calcium treatment. J Iron Steel Res Int. 2018;1(2):1243–1257. doi:10.1007/s42243-018-0017-3.
  • Liu W, Yang S, Li J, et al. Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag. J Iron Steel Res Int. 2019;26(11):1147–1153. doi:10.1007/s42243-018-0212-2
  • Zhao J, Zhu H, Wang L, et al. Effect of CaO/Al2O3ratio on desulphurization and non-metallic inclusions in low-density steel. Ironmak Steelmak. 2022;49(3):302–310. doi:10.1080/03019233.2021.1993695
  • Shu Q, Alatarvas T, Visuri VV, et al. Modelling the nucleation, growth and agglomeration of alumina inclusions in molten steel by combining Kampmann–Wagner numerical model with particle size grouping method. Metall Mater Trans B. 2021;52(3):1818–1829. doi:10.1007/s11663-021-02148-z.
  • Wang W, Zhu H, Han Y, et al. Effect of Al content on non-metallic inclusions in Fe–23Mn–xAl–0.7C lightweight steels. Ironmak Steelmak. 2021;48(9):1038–1047. doi:10.1080/03019233.2021.1909993
  • Atkinson HV, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci. 2003;48(5):457–520. doi:10.1016/S0079-6425(02)00014-2
  • Kaijalainen A, Karjalainen P, Porter D, et al. Effect of inclusions on the properties of ultra-high-strength low-alloy steel with a martensitic-bainitic microstructure [C]. Proceed 8th International Conference on Clean Steel; 2012.
  • Karr U, Schuller R, Fitzka M, et al. Influence of inclusion type on the very high cycle fatigue properties of 18Ni maraging steel. J Mater Sci. 2017;52(10):5954–5967. doi:10.1007/s10853-017-0831-1
  • Ånmark N, Karasev A, Jönsson PG. The effect of different non-metallic inclusions on the machinability of steels. Materials (Basel). 2015;8(2):751–783. doi:10.3390/ma8020751
  • Lou W, Zhu M. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on Euler–Euler approach. Metall Mater Trans B. 2013;44(5):1251–1263. doi:10.1007/s11663-013-9897-6
  • Davila O, Garcia-Demedices L, Morales RD. Mathematical simulation of fluid dynamics during steel draining operations from a ladle. Metall Mater Trans B. 2006;37(1):71–87. doi:10.1007/s11663-006-0087-7
  • Nakajima K, Okamura K. Inclusion transfer behavior across molten steel-slag interface. 4th int. conf. on molten steels and fluxes, ISIJ Int Sendai; 1992. 505–510.
  • Strandh J, Nakajima K, Eriksson R, et al. A mathematical model to study liquid inclusion behavior at the steel-slag interface. ISIJ Int. 2005;45(12):1838–1847. doi:10.2355/isijinternational.45.1838
  • Strandh J, Nakajima K, Eriksson R, et al. Solid inclusion transfer at a steel-slag interface with focus on Tundish conditions. ISIJ Int. 2005;45(11):1597–1606. doi:10.2355/isijinternational.45.1597
  • Yang S, Liu W, Li J. Motion of solid particles at molten metal–liquid slag interface. JOM. 2015;67(12):2993–3001. doi:10.1007/s11837-015-1642-y
  • Liu C, Yang S, Li J, et al. Motion behavior of nonmetallic inclusions at the interface of steel and slag. Part I: model development, validation, and preliminary analysis. Metall Mater Trans B. 2016;47(3):1882–1892. doi:10.1007/s11663-016-0605-1.
  • Valdez M, Shannon GS, Sridhar S. The ability of slags to absorb solid oxide inclusions. Trans Iron Steel Inst Japan. 2006;46(3):450–457. doi:10.2355/isijinternational.46.450
  • Shannon G, White L, Sridhar S. Modeling inclusion approach to the steel/slag interface. Mat Sci Eng: A. 2008;495(1–2):310–315. doi:10.1016/j.msea.2007.09.087
  • Liu W, Yang S, Li J. Calculation of static suspension depth and meniscus shape of a solid spherical inclusion at the steel–slag interface. Metall Mater Trans B. 2020;51(2):422–425. doi:10.1007/s11663-020-01770-7
  • Xuan C, Persson ES, Sevastopolev R, et al. Motion and detachment behaviors of liquid inclusion at molten steel–slag interfaces. Metall Mater Trans B. 2019;50(4):1957–1973. doi:10.1007/s11663-019-01568-2
  • Shannon GN, Sridhar S. Film-drainage, separation and dissolution of Al2O3 inclusions across interfaces between molten steel and Ladle-, Tundish-and Mold-Slags. High Temp Mat Pr-Isr. 2005;24(2):111–124. doi:10.1515/HTMP.2005.24.2.111.
  • Lee SH, Tse C, Yi KW, et al. Separation and dissolution of Al2O3 inclusions at slag/metal interfaces. J Non Cryst Solids. 2001;282:41–48. doi:10.1016/S0022-3093(01)00327-1
  • Yang J, Cui H, Zhang J, et al. Interfacial reaction between high-Al steel and CaO-Al2O3-based mold fluxes with different CaO/Al2O3 ratios at 1773K (1500°C). Metall Mater Trans B. 2019;50(6):2636–2646. doi:10.1007/s11663-019-01667-0.
  • Zhao B, Zhang J, Yan B. Interfacial phenomena and reaction kinetics between high Al molten steel and CaO-SiO2-type flux. Metals (Basel). 2022;12(3):391–407. doi:10.3390/met12030391
  • Kim DJ, Park JH. Interfacial reaction between CaO-SiO2-MgO-Al2O3 flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steel at 1873K (1600 °C). Metall Mater Trans B. 2012;43(4):875–886. doi:10.1007/s11663-012-9667-x.
  • Kim MS, Lee SW, Cho JW, et al. A reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux: part I. composition evolution in molten mold flux. Metall Mater Trans B. 2013;44(1):299–308. doi:10.1007/s11663-012-9770-z.
  • Kang YB, Kim MS, Lee SW. A reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux: part II. Reaction mechanism, interface morphology, and Al2O3 accumulation in molten mold flux. Metall Mater Trans B. 2013;44(2):309–316. doi:10.1007/s11663-012-9769-5
  • Chen J. Manual of commonly used charts and data in steelmaking. Beijing: Metallurgical Industry Press; 1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.