193
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on the determination methods of nitrate and the routes for its removal from environmental samples

, , , , , , , , , , , & show all
Received 20 Mar 2023, Accepted 28 Jul 2023, Published online: 01 Sep 2023

References

  • J.F. Shackelford and W. Alexander, editors, CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2000). https://doi.org/10.1201/9781420038408
  • A.L. Lavoisier, Elements of Chemistry in a New Systematic Order Containing All the Modern Discoveries ( Evert Duyckinck, no. 110 Pearl-Street, and James and Thomas Ronalds, no. 188 … , New York, 1806).
  • M.P. Lesser, L.I. Falcón, A. Rodríguez-Román, S. Enríquez, O. Hoegh-Guldberg and R. Iglesias-Prieto, Mar. Ecol. Prog. Ser. 346, 143–152 (2007). doi:10.3354/meps07008.
  • W. Frye, W. Smith and R. Williams, J Soil Water Conserv. 40 (2), 246–249 (1985).
  • R. Ruess, S. McNaughton and M. Coughenour, Oecologia 59, 253–261 (1983). doi:10.1007/BF00378845.
  • R.F. Muñoz-Huerta, R.G. Guevara-Gonzalez, L.M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez and R.V. Ocampo-Velazquez, Sensors 13, 10823–10843 (2013). doi:10.3390/s130810823.
  • P. Kumari, S. Akhila, Y.S. Rao and B.R. Devi, Syst. Rev. Pharm 10, 99–102 (2019).
  • A. Azmi, A.A. Azman, S. Ibrahim and M.A.M. Yunus, Int. J. Smart Sens. Intell. Syst. 10, 1–39 (2017). doi:10.21307/ijssis-2017-210.
  • R.H. Byrne and D.R. Kester, Mar. Chem. 4, 275–287 (1976). doi:10.1016/0304-4203(76)90013-X.
  • M.E.E. Alahi and S.C. Mukhopadhyay, Sens. Actuators A 280, 210–221 (2018). doi:10.1016/j.sna.2018.07.026.
  • H. Freiser, Ion-Selective Electrodes in Analytical Chemistry (Springer Science & Business Media, 2012).
  • K.M. Miranda, M.G. Espey and D.A. Wink, Nitric Oxide 5, 62–71 (2001). doi:10.1006/niox.2000.0319.
  • E.M. Oliveira, M. Rogero, E.C. Ferreira and J.A.G. Neto, Spectrochim. Acta Part A. 246, 119025 (2021). doi:10.1016/j.saa.2020.119025.
  • K.M. Cunningham, M.C. Goldberg and E.R. Weiner, Anal. Chem. 49, 70–75 (1977). doi:10.1021/ac50009a027.
  • T. Somekawa, J. Izawa, M. Fujita, J. Kawanaka and H. Kuze, Opt. Commun. 480, 126508 (2021). doi:10.1016/j.optcom.2020.126508.
  • N. Furuya, A. Matsuyuki, S. Higuchi and S. Tanaka, Water Res. 14, 747–752 (1980). doi:10.1016/0043-1354(80)90250-X.
  • P. Li, R. Dong, Y. Wu, H. Liu, L. Kong and L. Yang, Talanta 127, 269–275 (2014). doi:10.1016/j.talanta.2014.03.075.
  • C.T. Tran, H.T. Tran, H.T. Bui, T.Q. Dang and L.Q. Nguyen, J. Sci. 2, 172–177 (2017). doi:10.1016/j.jsamd.2017.05.002.
  • L. Mikac, E. Kovačević, Š. Ukić, M. Raić, T. Jurkin, I. Marić, M. Gotić and M. Ivanda, Spectrochim. Acta Part A. 252, 119478 (2021). doi:10.1016/j.saa.2021.119478.
  • H. Kerdoncuff, L.C. Deleebeeck and M. Lassen, Chemosensors 9, 29 (2021). doi:10.3390/chemosensors9020029.
  • J. Aramendia, L. Gomez-Nubla, M. Tuite, K. Williford, K. Castro and J. Madariaga, Geosci. Front 12, 101226 (2021). doi:10.1016/j.gsf.2021.101226.
  • M.N. Moshoeshoe and V. Obuseng, S. Afr. J. Chem. 71, 79–85 (2018). doi:10.17159/0379-4350/2018/v71a10.
  • B. Campanella, M. Onor and E. Pagliano, Anal. Chim. Acta 980, 33–40 (2017). doi:10.1016/j.aca.2017.04.053.
  • A. Antczak-Chrobot, P. Bąk and M. Wojtczak, Food Chem. 240, 648–654 (2018). doi:10.1016/j.foodchem.2017.07.158.
  • M. Nakamura, Anal. Lett. 13, 771–779 (1980). doi:10.1080/00032718008077998.
  • M. Brienza, R. Manasfi and S. Chiron, Water Res. 162, 22–29 (2019). doi:10.1016/j.watres.2019.06.055.
  • P. Singhaphan and F. Unob, Sens. Actuators B 327, 128938 (2021). doi:10.1016/j.snb.2020.128938.
  • S.-C. Pai, Y.-T. Su, M.-C. Lu, Y. Chou and T.-Y. Ho, ACS ES&T Water 1, 1524–1532 (2021). doi:10.1021/acsestwater.1c00065.
  • A.T. Mubarak, A.A. Mohamed, K.F. Fawy and A.S. Al-Shihry, Microchim. Acta 157, 99–105 (2007). doi:10.1007/s00604-006-0661-3.
  • T. TOMIYASU, Y. KONAGAYOSHI, K. ANAZAWA and H. SAKAMOTO, Anal. Sci. 17, 1437–1440 (2001). doi:10.2116/analsci.17.1437.
  • Z. Moldovan, Anal. Lett. 43, 1344–1354 (2010). doi:10.1080/00032710903518757.
  • J. Ghasemi, A. Jabbari, A. Amini, A. Oskoei and B. Abdolahi, Anal. Lett. 37, 2205–2214 (2004). doi:10.1081/AL-200026698.
  • D.J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K.R. Asmis and D.M. Neumark, J. Phys. Chem. A 113, 7584–7592 (2009). doi:10.1021/jp9017103.
  • M. Barzegar, M. Mousavi and A. Nemati, Microchem. J. 65, 159–163 (2000). doi:10.1016/S0026-265X(00)00049-7.
  • T.A. Doane and W.R. Horwáth, Anal. Lett. 36, 2713–2722 (2003). doi:10.1081/AL-120024647.
  • J. Causse, O. Thomas, A.-V. Jung and M.-F. Thomas, Water Res. 108, 312–319 (2017). doi:10.1016/j.watres.2016.11.010.
  • A. Shaviv, A. Kenny, I. Shmulevitch, L. Singher, Y. Raichlin and A. Katzir, Environ. Sci. Technol. 37 (12), 2807–2812 (2003).
  • C.J. Jameson, in Gas Phase NMR, edited by K. Jackowski and M. Jaszuński (The Royal Society of Chemistry, 2016), ch. 1, pp. 1–51.
  • N.J. Vickers, Curr. Biol. 27, R713–R715 (2017). doi:10.1016/j.cub.2017.05.064.
  • N. Hertkorn, C. Ruecker, M. Meringer, R. Gugisch, M. Frommberger, E. Perdue, M. Witt and P. Schmitt-Kopplin, Anal. Bioanal. Chem. 389, 1311–1327 (2007). doi:10.1007/s00216-007-1577-4.
  • T. Wlodarski and B. Zagrovic, Proc. Natl. Acad. Sci. U.S.A. 106, 19346–19351 (2009). doi:10.1073/pnas.0906966106.
  • P. Mazzei and A. Piccolo, Environ. Sci. Technol. 46, 5939–5946 (2012). doi:10.1021/es300265a.
  • J.T. Walsh, R.C. Chalk and C. Merritt, Anal. Chem. 45, 1215–1220 (1973). doi:10.1021/ac60329a015.
  • Y. Okamoto, E. Chou, M. Croce, D. Freeman, M. Roth and O. Colitti, Propellants Explos. Pyrotech. 7, 18–21 (1982). doi:10.1002/prep.19820070106.
  • M. Godejohann, M. Astratov, A. Preiss, K. Levsen and C. Mügge, Anal. Chem. 70, 4104–4110 (1998). doi:10.1021/ac980292a.
  • A. Preiss, M. Elend, S. Gerling, E. Berger-Preiss and K. Steinbach, Anal. Bioanal. Chem. 389, 1979–1988 (2007). doi:10.1007/s00216-007-1573-8.
  • M. Godejohann, L. Heintz, C. Daolio, J.-D. Berset and D. Muff, Environ. Sci. Technol. 43, 7055–7061 (2009). doi:10.1021/es901068d.
  • R.K. Harris, E.D. Becker, S.M.C. De Menezes, R. Goodfellow and P. Granger, Pure Appl. Chem. 73, 1795–1818 (2001). doi:10.1351/pac200173111795.
  • K. Schmidt-Rohr and J.-D. Mao, Chem. Phys. Lett. 359, 403–411 (2002). doi:10.1016/S0009-2614(02)00740-6.
  • C.-T. Li, W.-J. Lee, H.-H. Mi and C.-C. Su, Sci. Tot. Environ. 170, 171–183 (1995). doi:10.1016/0048-9697(95)04705-X.
  • D.J. Conley, S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, H. Kuosa, H. Markus Meier, B. Müller-Karulis, K. Nordberg, A. Norkko, G. Nürnberg, H. Pitkänen, N.N. Rabalais, R. Rosenberg, O.P. Savchuk, C.P. Slomp, M. Voss, F. Wulff and L. Zillén, Environ. Sci. Technol. 43, 3412–3420 (2009). doi:10.1021/es802762a.
  • S. Motomizu, H. Mikasa and K. Tôei, Anal. Chim. Acta 193, 343–347 (1987). doi:10.1016/S0003-2670(00)86167-X.
  • T. Ohta, Y. Arai and S. Takitani, Anal. Chem. 58, 3132–3135 (1986). doi:10.1021/ac00127a047.
  • I. Hornyák and L. Székelyhidi, Mikrochim. Acta 80, 355–359 (1983). doi:10.1007/BF01202012.
  • S.H. Lee and L.R. Field, Anal. Chem. 56, 2647–2653 (1984). doi:10.1021/ac00278a007.
  • D. Gladilovich, N. Grigorev, K. Sedyk and N. Pozdnyakova, J. Anal. Chem. USSR 44 (8), 1122–1126 (1989).
  • M.A.T. Fernández-Argüelles, B. Cañabate, J.M. Costa-Fernández, R. Pereiro and A. Sanz-Medel, Talanta 62, 991–995 (2004). doi:10.1016/j.talanta.2003.10.031.
  • H. Liu, G. Yang, E. Abdel-Halim and J.-J. Zhu, Talanta 104, 135–139 (2013). doi:10.1016/j.talanta.2012.11.020.
  • S. Biswas, B. Chowdhury and B.C. Ray, Talanta 64, 308–312 (2004). doi:10.1016/j.talanta.2004.02.018.
  • Q.-H. Liu, X.-L. Yan, J.-C. Guo, D.-H. Wang, L. Li, F.-Y. Yan and L.-G. Chen, Spectrochim. Acta Part A. 73, 789–793 (2009). doi:10.1016/j.saa.2009.03.018.
  • X. Zhang, H. Wang, N.-N. Fu and H.-S. Zhang, Spectrochim. Acta Part A. 59, 1667–1672 (2003). doi:10.1016/S1386-1425(02)00404-3.
  • F. Gao, L. Zhang, L. Wang, S. She and C. Zhu, Anal. Chim. Acta 533, 25–29 (2005). doi:10.1016/j.aca.2004.10.082.
  • X. Wang, E. Adams and A. Van Schepdael, Talanta 97, 142–144 (2012). doi:10.1016/j.talanta.2012.04.008.
  • H.D. Axelrod and N.A. Engel, Anal. Chem. 47, 922–924 (1975). doi:10.1021/ac60356a054.
  • A. Lapat, L. Székelyhidi and I. Hornyak, Biomed. Chromatogr. 11, 102–104 (1997). doi:10.1002/(SICI)1099-0801(199703)11:2<102:AID-BMC660>3.0.CO;2-0.
  • R.T. Masserini Jr and K.A. Fanning, Mar. Chem. 68, 323–333 (2000). doi:10.1016/S0304-4203(99)00088-2.
  • S.-I. Fujii, T. Tokuyama, M. Abo and A. Okubo, Anal. Sci. 20, 209–212 (2004). doi:10.2116/analsci.20.209.
  • M. Martínez-Tomé, R. Esquembre, R. Mallavia and C. Mateo, J. Fluoresc. 19, 119–125 (2009). doi:10.1007/s10895-008-0393-3.
  • K.-J. Huang, W.-Z. Xie, H.-S. Zhang and H. Wang, Microchim. Acta 161, 201–207 (2008). doi:10.1007/s00604-007-0784-1.
  • L. Kun-Ning, M. Jian, Y. Dong-Xing, Y.-M. Huang, F. Si-Chao and W. Qiao-Ling, Chinese J. Anal. Chem. 45, 151–156 (2017). doi:10.1016/S1872-2040(16)60991-X.
  • A. Mitschke, F.-M. Gutzki and D. Tsikas, J. Chromatogr. B 851, 287–291 (2007). doi:10.1016/j.jchromb.2007.02.032.
  • S.M. Helmke and M.W. Duncan, J. Chromatogr. B 851, 83–92 (2007). doi:10.1016/j.jchromb.2006.09.047.
  • D. Tsikas, Anal. Chem. 72, 4064–4072 (2000). doi:10.1021/ac9913255.
  • S. Kage, K. Kudo and N. Ikeda, J. Chromatogr. B Biomed. Sci. Appl. 742, 363–368 (2000). doi:10.1016/S0378-4347(00)00189-4.
  • S. Kage, K. Kudo and N. Ikeda, J. Anal. Toxicol. 26, 320–324 (2002). doi:10.1093/jat/26.6.320.
  • M. Akyüz and Ş. Ata, Talanta 79, 900–904 (2009). doi:10.1016/j.talanta.2009.05.016.
  • R. Linker, Appl. Spectrosc. 62, 248–250 (2008). doi:10.1366/000370208783575582.
  • P. Qian and J.J. Schoenau, J. Plant. Nutr. 28, 2193–2200 (2005). doi:10.1080/01904160500324717.
  • J.E. Szillery, I.J. Fernandez, S.A. Norton, L.E. Rustad and A.S. White, Environ. Monit. Assess. 116, 383–398 (2006). doi:10.1007/s10661-006-7462-3.
  • M. Honma and C. Smith, Anal. Chem. 26, 458–462 (1954). doi:10.1021/ac60087a008.
  • R. Belcher, S. Bogdanski, A. Calokerinos and A. Townshend, Analyst 106, 625–635 (1981). doi:10.1039/an9810600625.
  • I. Al-Zamil and A. Townshend, Anal. Chim. Acta 142, 151–157 (1982). doi:10.1016/S0003-2670(01)95276-6.
  • A. Çelik and E. Henden, Analyst 114, 563–566 (1989). doi:10.1039/AN9891400563.
  • P.E. Jackson, in Encyclopedia of Analytical Chemistry, edited by R.A. Meyers and M.P. Miller, 2006. https://doi.org/10.1002/9780470027318.a0835
  • W. Buchberger, TrAc Trend Anal. Chem. 20, 296–303 (2001). doi:10.1016/S0165-9936(01)00068-1.
  • S. Mou, H. Wang and Q. Sun, J. Chromatogr. A 640, 161–165 (1993). doi:10.1016/0021-9673(93)80178-B.
  • R. Schwabe, T. Darimont, T. Möhlmann, E. Pabel and M. Sonneborn, Int. J. Environ. Anal. Chem. 14, 169–179 (1983). doi:10.1080/03067318308071617.
  • M.J. Shaw and P.R. Haddad, Environ. Int. 30, 403–431 (2004). doi:10.1016/j.envint.2003.09.009.
  • P. Pastore, I. Lavagnini, A. Boaretto and F. Magno, J. Chromatogr. A 475, 331–341 (1989). doi:10.1016/S0021-9673(01)89687-4.
  • P.D. Royal and K.M. Jop, Environ. Toxicol. Risk Assess. 1216, 34 (1993).
  • M.C. Icardo, J.G. Mateo and J.M. Calatayud, Analyst 126, 1423–1427 (2001). doi:10.1039/b100109o.
  • D. He, Z. Zhang, Y. Huang and Y. Hu, Food Chem. 101, 667–672 (2007). doi:10.1016/j.foodchem.2006.02.024.
  • H. Small, Ion Chromatography (Springer Science & Business Media, New York, 2013).
  • P. Singh, M.K. Singh, Y.R. Beg and G.R. Nishad, Talanta 191, 364–381 (2019). doi:10.1016/j.talanta.2018.08.028.
  • Q.-H. Wang, L.-J. Yu, Y. Liu, L. Lin, R.-G. Lu, J.-P. Zhu, L. He and Z.-L. Lu, Talanta 165, 709–720 (2017). doi:10.1016/j.talanta.2016.12.044.
  • E. Nagababu and J.M. Rifkind, Free Radic. Biol. Med. 42, 1146–1154 (2007). doi:10.1016/j.freeradbiomed.2006.12.029.
  • Y. Kanda and M. Taira, Anal. Sci. 19, 695–699 (2003). doi:10.2116/analsci.19.695.
  • Z. Feng, Z. Li, X. Zhang, Y. Shi and N. Zhou, Molecules 22, 2061 (2017). doi:10.3390/molecules22122061.
  • Q. Yue and Z. Song, Microchem. J. 84, 10–13 (2006). doi:10.1016/j.microc.2006.03.005.
  • M. Yaqoob, B. Folgado Biot, A. Nabi and P.J. Worsfold, Luminescence 27, 419–425 (2012). doi:10.1002/bio.1366.
  • A. Townshend, Analyst 115, 495–500 (1990). doi:10.1039/AN9901500495.
  • C. Garside, Mar. Chem. 11, 159–167 (1982). doi:10.1016/0304-4203(82)90039-1.
  • C. Garside, Deep Sea Res. Part A 32, 723–732 (1985). doi:10.1016/0198-0149(85)90075-5.
  • Z. Huang, T. Korenaga and M.I. Helaleh, Microchim. Acta 134, 179–183 (2000). doi:10.1007/s006040050064.
  • R. Li, J.C. Yu, Z. Jiang, R. Zhou and H. Liu, J. Food Drug Anal. 11 (3), 251–257 (2003).
  • L. Lu, C. Chen, D. Zhao, F. Yang and X. Yang, Anal. Methods 7, 1543–1548 (2015). doi:10.1039/C4AY02721C.
  • M. Li, H. Wang, X. Zhang and H.-S. Zhang, Spectrochim. Acta Part A. 60, 987–993 (2004). doi:10.1016/S1386-1425(03)00329-9.
  • H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata and T. Nagano, Anal. Chem. 70, 2446–2453 (1998). doi:10.1021/ac9801723.
  • H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata and T. Nagano, Angew. Chem. Int. Ed. 38, 3209–3212 (1999). doi:10.1002/(SICI)1521-3773(19991102)38:21<3209:AID-ANIE3209>3.0.CO;2-6.
  • H. Wang, W. Yang, S.-C. Liang, Z.-M. Zhang and H.-S. Zhang, Anal. Chim. Acta 419, 169–173 (2000). doi:10.1016/S0003-2670(00)01000-X.
  • J.-S. Li, H. Wang, X. Zhang and H.-S. Zhang, Talanta 61, 797–802 (2003). doi:10.1016/S0039-9140(03)00380-1.
  • K.-J. Huang, H. Wang, Y.-H. Guo, R.-L. Fan and H.-S. Zhang, Talanta 69, 73–78 (2006). doi:10.1016/j.talanta.2005.08.062.
  • E. Andreoli, V. Annibaldi, D.A. Rooney, K.S. Liao, N.J. Alley, S.A. Curran and C.B. Breslin, Electroanalysis 23, 2164–2173 (2011). doi:10.1002/elan.201100105.
  • S. Aravamudhan and S. Bhansali, Sens. Actuators B 132, 623–630 (2008). doi:10.1016/j.snb.2008.01.046.
  • F. Can, S.K. Ozoner, P. Ergenekon and E. Erhan, Mater. Sci. Eng: C 32, 18–23 (2012). doi:10.1016/j.msec.2011.09.004.
  • M.O. Mendoza, E.P. Ortega, O.A. de Fuentes, Y. Prokhorov and J.G. Luna Barcenas, in 2014 IEEE 9th IberoAmerican Congress on Sensors, 2014. https://doi.org/10.1109/ibersensor.2014.6995562”
  • R.K. Mahajan, R. Kaur, H. Miyake and H. Tsukube, Anal. Chim. Acta 584, 89–94 (2007). doi:10.1016/j.aca.2006.11.011.
  • L. Li, J. Wang and Q. Fei, in 2010 8th World Congress on Intelligent Control and Automation, 2010. https://doi.org/10.1109/wcica.2010.5554664
  • L. Nuñez, X. Cetó, M. Pividori, M.V.B. Zanoni and M. Del Valle, Microchem. J. 110, 273–279 (2013). doi:10.1016/j.microc.2013.04.018.
  • T.A. Bendikov and T.C. Harmon, J. Chem. Educ. 82, 439 (2005). doi:10.1021/ed082p439.
  • L. Zhang, M. Zhang, H. Ren, P. Pu, P. Kong and H. Zhao, Comput. Electron. Agric. 112, 83–91 (2015). doi:10.1016/j.compag.2014.11.027.
  • C. Wardak, Electroanalysis 26, 864–872 (2014). doi:10.1002/elan.201300590.
  • X.-L. Zhang, J.-X. Wang, Z. Wang and S.-C. Wang, Sensors 5, 580–593 (2005). doi:10.3390/s5120580.
  • J. Krista, M. Kopanica and L. Novotný, Electroanalysis 12, 199–204 (2000). doi:10.1002/(SICI)1521-4109(200002)12:3<199:AID-ELAN199>3.0.CO;2-N.
  • S.M. Shariar and T. Hinoue, Anal. Sci. 26, 1173–1179 (2010). doi:10.2116/analsci.26.1173.
  • A.O. Solak, P. Gülser, E. Gökm and F. Gökmesşe, Microchim. Acta 134, 77–82 (2000). doi:10.1007/s006040070057.
  • A. Osman Solak and P. Çekirdek, Anal. Lett. 38, 271–280 (2005). doi:10.1081/AL-200045149.
  • N. Ishio, K. Fukushi, K. Michiba, S. Takeda and S.-I. Wakida, Anal. Bioanal. Chem. 374, 1165–1169 (2002). doi:10.1007/s00216-002-1583-5.
  • A. Gáspár, P. Juhász and K. Bágyi, J. Chromatogr. A 2, 327–331 (2005). doi:10.1016/j.chroma.2004.12.085.
  • T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S.-I. Wakida and E. Niki, J. Chromatogr. A 1051, 185–191 (2004). doi:10.1016/S0021-9673(04)01387-1.
  • S. Rodriguez-Mozaz, M.J. Lopez de Alda and D. Barceló, Anal. Bioanal. Chem. 386, 1025–1041 (2006). doi:10.1007/s00216-006-0574-3.
  • S. Rodriguez-Mozaz, M.J.L. de Alda and D. Barceló, Talanta 69, 377–384 (2006). doi:10.1016/j.talanta.2005.09.050.
  • B. Roig, I. Bazin, S. Bayle, D. Habauzit and J. Chopineau, Rap. Chem. Biol. Tech. Water Monit. 23, 175 (2009).
  • M. Farré, L. Kantiani, S. Pérez and D. Barceló, TrAc Trend Anal. Chem. 28, 170–185 (2009). doi:10.1016/j.trac.2008.09.018.
  • H.-H. Zeng, R.B. Thompson, B.P. Maliwal, G.R. Fones, J.W. Moffett and C.A. Fierke, Anal. Chem. 75, 6807–6812 (2003). doi:10.1021/ac0345401.
  • W. Xuejiang, S.V. Dzyadevych, J.-M. Chovelon, N.J. Renault, C. Ling, X. Siqing and Z. Jianfu, Talanta 69, 450–455 (2006). doi:10.1016/j.talanta.2005.10.014.
  • S. Cosnier, S. Da Silva, D. Shan and K. Gorgy, Bioelectrochemistry 74, 47–51 (2008). doi:10.1016/j.bioelechem.2008.04.011.
  • Z. Zhang, S. Xia, D. Leonard, N. Jaffrezic-Renault, J. Zhang, F. Bessueille, Y. Goepfert, X. Wang, L. Chen, Z. Zhu, J. Zhao, M.G. Almeida and C.M. Silveira, Biosens. Bioelectron. 24, 1574–1579 (2009). doi:10.1016/j.bios.2008.08.010.
  • N. Amini, M. Shamsipur, M.B. Gholivand and K. Naderi, Microchem. J. 131, 43–50 (2017). doi:10.1016/j.microc.2016.11.006.
  • B. Mahieuxe, M. Carré, M. Viriot, J. André and M. Donner, J. Fluoresc. 4, 7–10 (1994). doi:10.1007/BF01876648.
  • J. Camas-Anzueto, A. Aguilar-Castillejos, J. Castañón-González, M. Lujpán-Hidalgo, H.H. De Leon and R.M. Grajales, Opt. Lasers Eng. 60, 38–43 (2014). doi:10.1016/j.optlaseng.2014.04.001.
  • M.Y. Chong, M.Z.M. Jafri, L.H. San and T. C. Ho, in 2012 International Conference on Computer and Communication Engineering (ICCCE), 2012. https://doi.org/10.1109/iccce.2012.6271194
  • Y. Moo, M. Matjafri, H. Lim and C. Tan, Optik 127, 1312–1319 (2016). doi:10.1016/j.ijleo.2015.09.072.
  • K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift and S.C. Riser, J. Atmos. Ocean. Technol. 30, 1854–1866 (2013). doi:10.1175/JTECH-D-12-00221.1.
  • N. Goldfine, V. Zilberstein, J.S. Cargill, D. Schlicker and I. Shay, Mater. Eval. 60 (7), 870–877 (2002).
  • A.I. Zia, A.M. Syaifudin, S.C. Mukhopadhyay, I.H. Al-Bahadly, P.-L. Yu, C.P. Gooneratne, J. Kosel and T.-S. Liao, MEMS based impedimetric sensing of phthalates, 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013. doi:10.1109/i2mtc.2013.6555536 .
  • A.M. Syaifudin, P. Yu, S.C. Mukhopadhyay, C.P. Gooneratne and J. Kosel, Analysis of different coating thickness on new type of planar interdigital sensors for endotoxin detection, 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013. doi:10.1109/i2mtc.2013.6555663.
  • H. Müller, T. von Dobeneck, W. Nehmiz and K. Hamer, Geo-Mar. Lett. 31, 123–140 (2011). doi:10.1007/s00367-010-0220-0.
  • J.H. Goh, O. Korostynska, A. Mason and A.I. Al-Shamma’a, in 2012 Sixth International Conference on Sensing Technology (ICST), 2012. https://doi.org/10.1109/icsenst.2012.6461680
  • M.M. Yunus and S. Mukhopadhyay, Meas. Sci. Technol. 22, 025107 (2011). doi:10.1088/0957-0233/22/2/025107.
  • M.M. Yunus, V. Kasturi, S. Mukhopadhyay and G.S. Gupta, Sheep skin property estimation using a low-cost planar sensor, 2009 IEEE Intrumentation and Measurement Technology Conference, 2009. doi:10.1109/imtc.2009.5168497.
  • A. Azmi, A.A. Azman, K.K. Kaman, S. Ibrahim, S.C. Mukhopadhyay, S.W. Nawawi and M.A.M. Yunus, IEEE Sens. J. 17, 5244–5251 (2017). doi:10.1109/JSEN.2017.2720701.
  • M.A.M. Yunus and S.C. Mukhopadhyay, IEEE Sens. J. 11, 1440–1447 (2010). doi:10.1109/JSEN.2010.2091953.
  • A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi and S. Ibrahim, Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate, 2013 Seventh International Conference on Sensing Technology (ICST), 2013. doi:10.1109/icsenst.2013.6727742.
  • M.A.M. Yunus, S. Ibrahim, W.A.H. Altowayti, G.P. San and S.C. Mukhopadhyay, Selective membrane for detecting nitrate based on planar electromagnetic sensors array, 2015 10th Asian Control Conference (ASCC), 2015. doi:10.1109/ascc.2015.7244617.
  • A. Waseem and A. Nabi, Acta Chim. Slov. 58, 569–575 (2011).
  • S. Wang, K. Lin, N. Chen, D. Yuan and J. Ma, Talanta 146, 744–748 (2016). doi:10.1016/j.talanta.2015.06.031.
  • A.A. Chetty and S. Prasad, Food Chem. 116, 561–566 (2009). doi:10.1016/j.foodchem.2009.03.006.
  • S. Chaneam, W. Taweetong, K. Kaewyai, P. Thienwong, A. Takaew and R. Chaisuksant, Procedia Chem. 20, 73–75 (2016). doi:10.1016/j.proche.2016.07.011.
  • P.J. Worsfold, Microchim. Acta 154, 45–48 (2006). doi:10.1007/s00604-006-0498-9.
  • F.R. Mansour and N.D. Danielson, TrAc Trend Anal. Chem. 40, 1–14 (2012). doi:10.1016/j.trac.2012.06.006.
  • S. Feng, M. Zhang, Y. Huang, D. Yuan and Y. Zhu, Talanta 117, 456–462 (2013). doi:10.1016/j.talanta.2013.09.042.
  • A. Bhatnagar and M. Sillanpää, Chem. Eng. J. 168, 493–504 (2011). doi:10.1016/j.cej.2011.01.103.
  • A. Mohseni-Bandpi, D.J. Elliott and M.A. Zazouli, J. Environ. Health Sci. Eng. 11, 1–11 (2013). doi:10.1186/2052-336X-11-35.
  • L.A. Richards, M. Vuachère and A.I. Schäfer, Desalination 261, 331–337 (2010). doi:10.1016/j.desal.2010.06.025.
  • S. Tyagi, D. Rawtani, N. Khatri and M. Tharmavaram, J. Water Process Eng. 21, 84–95 (2018). doi:10.1016/j.jwpe.2017.12.005.
  • H. Demiral and G. Gündüzoğlu, Bioresour. Technol. 101, 1675–1680 (2010). doi:10.1016/j.biortech.2009.09.087.
  • J.R. Pan, C. Huang, W.-P. Hsieh and B.-J. Wu, Sep. Purif. Technol. 84, 52–55 (2012). doi:10.1016/j.seppur.2011.06.024.
  • H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao and M. Shu, Appl. Surf. Sci. 284, 942–949 (2013). doi:10.1016/j.apsusc.2013.04.013.
  • M. Muthu, D. Ramachandran, N. Hasan, M. Jeevanandam, J. Gopal and S. Chun, Mater. Chem. Phys. 189, 12–21 (2017). doi:10.1016/j.matchemphys.2016.12.032.
  • M. Uğurlu, I. Kula, M.H. Karaoğlu and Y. Arslan, Environ. Prog. Sustain. Energy 28, 547–557 (2009). doi:10.1002/ep.10358.
  • A.M. Bergquist, J.K. Choe, T.J. Strathmann and C.J. Werth, Water Res. 96, 177–187 (2016). doi:10.1016/j.watres.2016.03.054.
  • S. Rahdar, K. Pal, L. Mohammadi, A. Rahdar, Y. Goharniya, S. Samani and G.Z. Kyzas, J. Mol. Struct. 1231, 129686 (2021). doi:10.1016/j.molstruc.2020.129686.
  • J. Yu, Z. Pang, C. Zheng, T. Zhou, J. Zhang, H. Zhou and Q. Wei, Appl. Surf. Sci. 470, 84–90 (2019). doi:10.1016/j.apsusc.2018.11.112.
  • J.J. Villora-Picó, M.J. García-Fernández, A. Sepúlveda-Escribano and M.M. Pastor-Blas, Chem. Eng. J. 403, 126228 (2021). doi:10.1016/j.cej.2020.126228.
  • M.T. Gutierrez-Wing, R.F. Malone and K.A. Rusch, Aquacult. Eng. 51, 36–43 (2012). doi:10.1016/j.aquaeng.2012.07.002.
  • G. Luo, G. Xu, H. Tan, J. Gao and W. Liu, Int. Biodeterior. Biodegrad. 110, 155–162 (2016). doi:10.1016/j.ibiod.2016.03.013.
  • W. Wu, L. Yang and J. Wang, Environ. Sci. Pollut. R. 20, 333–339 (2013). doi:10.1007/s11356-012-0926-9.
  • H. Marušincová, L. Husárová, J. Růžička, M. Ingr, V. Navrátil, L. Buňková and M. Koutny, Int. Biodeterior. Biodegrad. 84, 21–28 (2013). doi:10.1016/j.ibiod.2013.05.023.
  • W. Wu, F. Yang and L. Yang, Bioresour. Technol. 118, 136–140 (2012). doi:10.1016/j.biortech.2012.04.066.
  • Z. Shen and J. Wang, Bioresour. Technol. 102, 8835–8838 (2011). doi:10.1016/j.biortech.2011.06.090.
  • P. Li, J. Zuo, W. Xing, L. Tang, X. Ye, Z. Li, L. Yuan, K. Wang and H. Zhang, J. Environ. Sci. 25, 1972–1979 (2013). doi:10.1016/S1001-0742(12)60259-9.
  • Z. Xu and X. Chai, Int. Biodeterior. Biodegrad. 116, 175–183 (2017). doi:10.1016/j.ibiod.2016.10.033.
  • G. Luo, Z. Hou, L. Tian and H. Tan, Aquacult. Fish. 5, 92–98 (2020). doi:10.1016/j.aaf.2019.04.002.
  • W.M. Golie and S. Upadhyayula, Int. J. Biol. Macromol. 97, 489–502 (2017). doi:10.1016/j.ijbiomac.2017.01.066.
  • S. Ahuja (Sut), Novel Solut. Water Pollut. 1–14 (2013). doi:10.1021/bk-2013-1123.ch001.
  • H. Chen, S. Liu, T. Liu, Z. Yuan and J. Guo, Chem. Eng. J. 393, 124594 (2020). doi:10.1016/j.cej.2020.124594.
  • Y. Sun and W. Zheng, Chemosphere 258, 127373 (2020). doi:10.1016/j.chemosphere.2020.127373.
  • M. Stjepanović, N. Velić, A. Lončarić, D. Gašo-Sokač, V. Bušić and M. Habuda-Stanić, J. Mol. Liq. 285, 535–544 (2019). doi:10.1016/j.molliq.2019.04.105.
  • Q. Hu, H. Liu, Z. Zhang and Y. Xie, J. Mol. Liq. 309, 113057 (2020). doi:10.1016/j.molliq.2020.113057.
  • J. Azamat, Comput. Mater. Sci. 187, 110118 (2021). doi:10.1016/j.commatsci.2020.110118.
  • H. Nassar, A. Zyoud, A. El-Hamouz, R. Tanbour, N. Halayqa and H.S. Hilal, Sustain. Chem. Pharm. 18, 100335 (2020). doi:10.1016/j.scp.2020.100335.
  • L.D. Hafshejani, A. Hooshmand, A.A. Naseri, A.S. Mohammadi, F. Abbasi and A. Bhatnagar, Ecol. Eng. 95, 101–111 (2016). doi:10.1016/j.ecoleng.2016.06.035.
  • M. Songolzadeh, M. Soleimani and M. Takht Ravanchi, Pet. Sci. 16, 1442–1454 (2019). doi:10.1007/s12182-019-0351-5.
  • J. Wu, Y. Hong, F. Guan, Y. Wang, Y. Tan, W. Yue, M. Wu and L. Bin, Sci. Rep. 6, 1–9 (2016). doi:10.1038/srep20165.
  • Z. Feng, W. Wei, L. Wang and R. Hong, RSC Adv. 5, 96911–96917 (2015). doi:10.1039/C5RA19642F.
  • N. Taoufik, A. Elmchaouri, S.A. Korili and A. Gil, J. Appl Water Eng. Res. 8, 66–77 (2020). doi:10.1080/23249676.2020.1723446.
  • H. Roshanravan, S.M. Borghei, A.H. Hassani and R Vagheei, Int. J. Environ. Anal. Chem. 102, 4830 (2020). doi:10.1080/03067319.2020.1789616.
  • N. Salman Tabrizi and M. Yavari, J. Environ. Health Sci. Eng. 55, 777–787 (2020). doi:10.1080/10934529.2020.1741998.
  • M. Elazzouzi, K. Haboubi and M. Elyoubi, Chem. Eng. Res. Des. 117, 614–626 (2017). doi:10.1016/j.cherd.2016.11.011.
  • W.T. Mohammed and F.Y. AlJaberi, Desalin. Water Treat. 101, 86–91 (2018). doi:10.5004/dwt.2018.21812.
  • S. Vasudevan and M.A. Oturan, Environ. Chem. Lett. 12, 97–108 (2014). doi:10.1007/s10311-013-0434-2.
  • K. Govindan, M. Noel and R. Mohan, J. Water Process Eng. 6, 58–63 (2015). doi:10.1016/j.jwpe.2015.02.008.
  • A.K. Sharma and A. Chopra, Appl. Water Sci. 7, 1239–1246 (2017). doi:10.1007/s13201-015-0320-0.
  • D. Ghosh, H. Solanki and M. Purkait, J. Hazard. Mater. 155, 135–143 (2008). doi:10.1016/j.jhazmat.2007.11.042.
  • S. Aoudj, A. Khelifa, N. Drouiche and M. Hecini, Desalin. Water Treat. 51, 1596–1602 (2013). doi:10.1080/19443994.2012.714584.
  • M.M. Emamjomeh and M. Sivakumar, J. Environ. Manag. 90, 1663 (2009). doi:10.1016/j.jenvman.2008.12.011.
  • F. Ghanbari, M. Moradi, A. Mohseni-Bandpei, F. Gohari, T. Mirtaleb Abkenar and E. Aghayani, Int. J. Environ. Sci. Te. 11, 1653–1660 (2014). doi:10.1007/s13762-014-0587-y.
  • M. Majlesi, S.M. Mohseny, M. Sardar, S. Golmohammadi and A. Sheikhmohammadi, Sustain. Environ. Res. 26, 287–290 (2016). doi:10.1016/j.serj.2016.09.002.
  • M. Abdel-Aziz, E.-S.Z. El-Ashtoukhy, M.S. Zoromba, M. Bassyouni and G. Sedahmed, J. Ind. Eng. Chem. 82, 105–112 (2020). doi:10.1016/j.jiec.2019.10.001.
  • M. Amarine, B. Lekhlif and J. Echaabi, Groundw. Sustain. Dev. 11, 100452 (2020). doi:10.1016/j.gsd.2020.100452.
  • K.S. Hashim, A. Shaw, R. Al Khaddar, M. Ortoneda Pedrola and D. Phipps, J. Environ. Manag. 197, 80 (2017). doi:10.1016/j.jenvman.2017.03.048.
  • T. Yehya, M. Chafi, W. Balla, C. Vial, A. Essadki and B. Gourich, Sep. Purif. Technol. 132, 644–654 (2014). doi:10.1016/j.seppur.2014.05.022.
  • D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng and R. Zhang, J. Clean. Prod. 268, 121725 (2020). doi:10.1016/j.jclepro.2020.121725.
  • J. Li, S. Dong, Y. Wang, X. Dou and H. Hao, J. Environ. Sci. 91, 177–188 (2020). doi:10.1016/j.jes.2020.01.029.
  • B.P. Mora, F.A. Bertoni, M.F. Mangiameli, J.C. González and S.E. Bellú, Water Sci. Eng. 13, 307–316 (2020). doi:10.1016/j.wse.2020.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.