167
Views
0
CrossRef citations to date
0
Altmetric
Articles

On stratified flow over a topographic ridge in a rotating annulus

ORCID Icon &
Pages 25-70 | Received 25 May 2023, Accepted 30 Dec 2023, Published online: 13 Feb 2024

References

  • Baines, P., Topographic Effects in Stratified Flows, 2nd ed., 2022 (Cambridge: Cambridge University Press). Doi:10.1017/9781108673983.
  • Banerjee, A., Bhattacharya, A. and Balasubramanian, S., Experimental study of rotation convection in the presence of bi-directional thermal gradients with localised heating. AIP Adv. 2018, 8, 115324. Doi:10.1063/1.5061808.
  • Cummins, P., Vagle, S., Armi, L. and Farmer, D., Stratified flow over topography: upstream influence and generation of nonlinear internal waves. Proc. Math. Phys. Eng. Sci. 2003, 459, 1467–1487. Doi:10.1098/rspa.2002.1077.
  • Dossmann, Y., Rosevear, M., Griffiths, R., Hogg, A., Hughes, G. and Copeland, M., Experiments with mixing in stratified flow over a topographic ridge. J. Geophys. Res. Oceans 2016, 121, 6961–6977. Doi:10.1002/2016JC011990.
  • Durran, D., Mountain waves and downslope winds. In Atmospheric Processes over Complex Terrain. Meterological Monographs, edited by W. Blumen, Vol. 23, pp. 59–83, 1990 (American Meteorological Society: Boston, Massachusetts). Doi:10.1007/978-1-935704-25-6-4.
  • Farmer, D. and Armi, L., Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. Math. Phys. Eng. Sci. 1999, 455, 3221–3258. Doi:10.1098/rspa.1999.0448.
  • Harlander, U., Wenzel, J., Alexandrov, K., Wang, Y. and Egbers, C., Simultaneous PIV and thermography measurements of partially blocked flow in a differentially heated rotating annulus. Exp. Fluids 2012, 52, 1077–1087. Doi:10.1007/s00348-011-1195-y.
  • Harlander, U., Borcia, I., Vincze, M. and Rodda, C., Probability distribution of extreme events in a baroclinic wave laboratory experiment. Fluids 2022, 7, 274. Doi:10.3390/fluids7080274.
  • Harlander, U., Sukhanocskii, A., Abide, S., Borcia, I., Popova, E., Rodda, C., Vasiliev, A. and Vincze, M., New laboratory experiments to study the large-scale circulation and climate dynamics. Atmosphere 2023, 14, 836. Doi:10.3390/atmos14050836.
  • Hide, R., An experimental study of thermal convection in a rotating liquid. Philos. Trans. Royal Soc. A 1958, 250, 441–478. Doi:10.1098/rsta.1958.0004.
  • Hignett, P., White, A., Carter, R., Jackson, W. and Small, R., A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Q. J. R. Meteorol. Soc. 1985, 111, 131–154. Doi:10.1002/qj.49711146705.
  • Lapeyre, G., Surface quasi-geostrophy. Fluids 2017, 2, 7–28. Doi:10.3390/fluids2010007.
  • Legg, S., Mixing by oceanic lee waves. Annu. Rev. Fluid Mech. 2021, 53, 173–201. Doi:10.1146/annurev-fluid-051220-043904.
  • Long, R., Some aspects of the flow of stratified fluids III. Continuous density gradients. Tellus 1955, 7, 341–357. Doi:10.1111/j.2153-3490.1955.tb01171.x.
  • MacKinnon, J., Alford, M., Ansong, J., Arbic, B., Barna, A., Briegleb, B., Bryan, F., Buijsman, M., Chassignet, E., Danabasoglu, G., Diggs, S., Griffies, S., Hallberg, R., Jayne, S., Jochum, M., Klymak, J., Kunze, E., Large, W., Legg, S., Mater, B., Melet, A., Merchant, L., Musgrave, R., Nash, J., Norton, N., Pickering, A., Pinkel, R., Polzin, K., Simmons, H., Laurent, L.S., Sun, O., Trossman, D., Waterhouse, A., Whalen, C. and Zhao, Z., Climate process team on internal wave-driven ocean mixing. Bull. Am. Meteorol. Soc. 2017, 98, 2429–2454. Doi:10.1175/BAMS-D-16-0030.1.
  • Marshall, S. and Read, P., An experimental investigation into topographic resonance in a baroclinic rotating annulus. Geophys. Astrophys. Fluid Dyn. 2015, 109, 391–421. Doi:10.1080/03091929.2015.1055476.
  • Marshall, S. and Read, P., An experimental investigation of blocking by partial barriers in a rotating baroclinic annulus. Geophys. Astrophys. Fluid Dyn. 2018, 112, 97–129. Doi:10.1080/03091929.2017.1406486.
  • McDougall, T. and Ferrari, R., Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr. 2017, 47, 261–283. Doi:10.1175/JPO-D-16-0082.1.
  • Meyer, A., Polzin, K., Sloyan, B. and Phillips, H., Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr. 2015, 46, 417–437. Doi:10.1175/JPO-D-15-0055.1.
  • Munk, W. and Wunsch, C., Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 1998, 45, 1977–2010. Doi:10.1016/S0967-0637(98)00070-3.
  • Nikurashin, M. and Ferrari, R., Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 2013, 40, 3133–3137. Doi:10.1002/grl.50542.
  • Rayer, Q., Johnson, D. and Hide, R., Thermal convection in a rotating fluid annulus blocked by a radial barrier. Geophys. Astrophys. Fluid Dyn. 1998, 87, 215–252. Doi:10.1080/03091929808221148.
  • Read, P., Dynamics and circulation regimes of terrestrial planets. Planet. Space Sci. 2011, 59, 900–914. Doi:10.1016/j.pss.2010.04.024.
  • Read, P., Zonal jet flows in the laboratory: an introduction. In Zonal Jets: Phenomenology, Genesis, and Physics, edited by B. Galperin, P.L. Read, pp. 119–134, 2019 (Cambridge University Press: UK). Doi:10.1017/9781107358225.006.
  • Read, P. and Risch, S., A laboratory study of global-scale wave interactions in baroclinic flow with topography I: multiple flow regimes. Geophys. Astrophys. Fluid Dyn. 2011, 105, 128–160. Doi:10.1080/03091929.2010.537826.
  • Read, P., Perez, E., Moroz, I. and Young, R., General circulation of planetary atmospheres: insights from rotating annulus and related experiments. In Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, edited by T. Von Larcher, P.D. Williams, pp. 9–44, 2015 (Hoboken: American Geophysical Union: John Wiley & Sons). Doi:10.1002/9781118856024.ch1.
  • Risch, S. and Read, P., A laboratory study of global-scale wave interactions in baroclinic flow with topography II: vascillations and low-frequency variability. Geophys. Astrophys. Fluid Dyn. 2015, 109, 359–390. Doi:10.1080/03091929.2015.1055477.
  • Rodda, C., Borcia, I., Gal, P.L., Vincze, M. and Harlander, U., Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment. Geophys. Astrophys. Fluid Dyn. 2018, 112, 175–206. Doi:10.1080/03091929.2018.1461858.
  • Rodda, C., Hien, S., Achatz, U. and Harlander, U., A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Exp. Fluids 2020, 61, 2. Doi:10.1007/s00348-019-2825-z.
  • Rodda, C., Harlander, U. and Vincze, M., Jet stream variability in a polar warming scenario -- a laboratory perspective. Weather Clim. Dyn. 2022, 3, 937–950. Doi:10.5194/wcd-3-937-2022.
  • Scolan, H. and Read, P., A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment. Exp. Fluids 2017, 58, 75. Doi:10.1007/s00348-017-2347-5.
  • Simpson, J., Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 1982, 14, 213–234. Doi:10.1146/annurev.fl.14.010182.001241.
  • Smith, C., Speer, K. and Griffiths, R., Multiple zonal jets in a differentially heated rotating annulus. J. Phys. Oceanogr. 2014, 44, 2273–2291. Doi:10.1175/JPO-D-13-0255.1.
  • Stewart, K. and Macleod, F., A laboratory model for a meandering zonal jet. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002943. Doi:10.1029/2021MS002943.
  • Stewart, K., Shakespeare, C., Dossmann, Y. and Hogg, A., A simple technique for developing and visualising stratified fluid dynamics: the hot double-bucket. Exp. Fluids 2021, 62, 103. Doi:10.1007/s00348-021-03190-y.
  • Sutherland, B., Dauxois, T. and Peacock, T., Internal waves in laboratory experiments. In Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, edited by T. Von Larcher, P.D. Williams, pp. 193–212, 2015 (Hoboken: American Geophysical Union: John Wiley & Sons). Doi:10.1002/9781118856024.ch10.
  • Tian, Y., Weeks, E., Ide, K., Urbach, J., Baroud, C., Ghil, M. and Swinney, H., Experimental and numerical studies of an eastward jet over topography. J. Fluid Mech. 2001, 438, 129–157. Doi:10.1017/S0022112001004372.
  • Vincze, M., Borcia, I., Harlander, U. and Gal, P.L., Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability. Fluid Dyn. Res. 2016, 48, 061414. Doi:10.1088/0169-5983/48/6/061414.
  • Vincze, M., Bozoki, T., Herein, M., Borcia, I., Harlander, U., Horicsanyi, A., Nyerges, A., Rodda, C., Pal, A. and Palfy, J., The Drake Passage opening from an experimental fluid dynamics point of view. Sci. Rep. 2021, 11, 19951. Doi:10.1038/s41598-021-99123-0.
  • Von Larcher, T. and Egbers, C., Experiments on transitions of baroclinic waves in a differentially heated rotating annulus. Nonlinear Process. Geophys. 2005, 12, 1033–1041. Doi:10.5194/npg-12-1033-2005.
  • Weeks, E., Tian, Y., Urbach, J., Ide, K., Swinney, H. and Ghil, M., Transitions between blocked and zonal flows in a rotating annulus with topography. Science 1997, 278, 1598–1601. Doi:10.1126/science.278.5343.1598.
  • Winters, K. and Armi, L., Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech. 2012, 700, 502–513. Doi:10.1017/jfm.2012.157.
  • Winters, K. and Armi, L., Topographic control of stratified flows: upstream jets, blocking and isolating layers. J. Fluid Mech. 2014, 753, 80–103. Doi:10.1017/jfm.2014.363.
  • Wordsworth, R., Read, P. and Yamazaki, Y., Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Phys. Fluids 2008, 20, 126602. Doi:10.1063/1.2990042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.