1,149
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The Sway of Specialty Malts and Mash pH on Iron Ion Speciation and the Reducing Power of Wort

, , , & ORCID Icon
Pages 23-31 | Received 26 Oct 2022, Accepted 06 Feb 2023, Published online: 16 Mar 2023

Literature cited

  • Bamforth, C. W.; Lentini, A. The Flavor Instability of Beer. In Beer: A Quality Perspective (Volume in Handbook of Alcoholic Beverages); Bamforth, C. W., Russell, I., Stewart, G. G., Eds.; Elsevier: Cambridge, Massachusetts, 2009; pp 85–109.
  • Wauters, R.; Britton, S. J.; Verstrepen, K. J. Old Yeasts, Young Beer—The Industrial Relevance of Yeast Chronological Life Span. Yeast. 2021, 38, 339–351. DOI: 10.1002/yea.3650.
  • Baert, J. J.; De Clippeleer, J.; Hughes, P. S.; De Cooman, L.; Aerts, G. On the Origin of Free and Bound Staling Aldehydes in Beer. J. Agric. Food Chem. 2012, 60, 11449–11472. DOI: 10.1021/jf303670z.
  • Vanderhaegen, B.; Delvaux, F.; Daenen, L.; Verachtert, H.; Delvaux, F. R. Aging Characteristics of Different Beer Types. Food Chem. 2007, 103, 404–412. DOI: 10.1016/j.foodchem.2006.07.062.
  • Van Mieghem, T.; Delvaux, F.; Dekleermaeker, S.; Britton, S. J. Top of the Ferrous Wheel – The Influence of Iron Ions on Flavor Deterioration in Beer. J. Am. Soc. Brew. Chem. 2022. DOI: 10.1080/03610470.2022.2124363.
  • De Schutter, D. P.; Saison, D.; Delvaux, F.; Derdelinckx, G. The Chemistry of Aging Beer. In Beer in Health and Disease Prevention; Preedy, V. R., Ed.; Academic Press: Cambridge, Massachusetts, 2008, pp 375–388.
  • Jenkins, D.; James, S.; Dehrmann, F.; Smart, K.; Cook, D. Impacts of Copper, Iron, and Manganese Metal Ions on the EPR Assessment of Beer Oxidative Stability. J. Am. Soc. Brew. Chem. 2018, 76, 50–57. DOI: 10.1080/03610470.2017.1402585.
  • Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The Chemistry of Beer aging - A Critical Review. Food Chem. 2006, 95, 357–381. DOI: 10.1016/j.foodchem.2005.01.006.
  • Kunz, T.; Strähmel, A.; Cortés, N.; Kroh, L. W.; Methner, F. J. Influence of Intermediate Maillard Reaction Products with Enediol Structure on the Oxidative Stability of Beverages. J. Am. Soc. Brew. Chem 2013, 71, 114–123. DOI: 10.1094/ASBCJ-2013-0429-01.
  • Frederiksen, A. M.; Festersen, R. M.; Andersen, M. L. Oxidative Reactions during Early Stages of Beer Brewing Studied by Electron Spin Resonance and Spin Trapping. J. Agric. Food Chem. 2008, 56, 8514–8520. DOI: 10.1021/jf801666e.
  • Arts, M. J. T. J.; Grun, C.; De Jong, R. L.; Voss, H.-P.; Bast, A.; Mueller, M. J.; Haenen, G. R. M. M. Oxidative Degradation of Lipids during Mashing. J. Agric. Food Chem. 2007, 55, 7010–7014. DOI: 10.1021/jf070505+.
  • Meilgaard, M. C.; Reid, D. S.; Wyborski, K. A. Reference Standards for Beer Flavor Terminology System. J. Am. Soc. Brew. Chem. 1982, 40, 119–128. DOI: 10.1094/ASBCJ-40-0119.
  • Glindemann, D.; Dietrich, A.; Staerk, H. J.; Kuschk, P. The Two Odors of Iron When Touched or Pickled: (Skin) Carbonyl Compounds and Organophosphines. Angew. Chem. Int. Ed. Engl. 2006, 45, 7006–7009. DOI: 10.1002/anie.200602100.
  • Lawless, H. T.; Schlake, S.; Smythe, J.; Lim, J.; Yang, H.; Chapman, K.; Bolton, B. Metallic Taste and Retronasal Smell. Chem. Senses. 2004, 29, 25–33. DOI: 10.1093/chemse/bjh003.
  • Lubran, M. B.; Lawless, H. T.; Lavin, E.; Acree, T. E. Identification of Metallic-Smelling 1-Octen-3-One and 1-Nonen-3-One from Solutions of Ferrous Sulfate. J. Agric. Food Chem. 2005, 53, 8325–8327. DOI: 10.1021/jf0511594.
  • Doi, N.; Kobayashi, M.; Masuda, S.; Aizawa, M. Identifying and Controlling Formation of Compounds That Affect Metallic Flavor of Beer. World Brewing Congress 2016, 170. https://www.asbcnet.org/events/archives/2016/proceedings/Documents/170_Doi.pdf.
  • Doi, N.; Kobayashi, M.; Masuda, S.; Aizawa, M. What Compound is Primarily Responsible for the Metallic Flavor in Beer? in 2015 ASBC Annual Meeting 2015, https://www.asbcnet.org/events/archives/2015Meeting/proceedings/2015Presentations/13_Doi.pdf.
  • Epke, E. M.; Lawless, H. T. Retronasal Smell and Detection Thresholds of Iron and Copper Salts. Physiol. Behav. 2007, 92, 487–491. DOI: 10.1016/j.physbeh.2007.04.022.
  • Ömür-Özbek, P.; Dietrich, A. M.; Duncan, S. E.; Lee, Y. W. Role of Lipid Oxidation, Chelating Agents, and Antioxidants in Metallic Flavor Development in the Oral Cavity. J. Agric. Food Chem. 2012, 60, 2274–2280. DOI: 10.1021/jf204277v.
  • Andersen, M. L.; Skibsted, L. H. Electron Spin Resonance Spin Trapping Identification of Radicals Formed during Aerobic Forced Aging of Beer. J. Agric. Food Chem. 1998, 46, 1272–1275. DOI: 10.1021/jf9708608.
  • Mertens, T.; Kunz, T.; Wietstock, P. C.; Methner, F. J. Complexation of Transition Metals by Chelators Added during Mashing and Impact on Beer Stability. J. Inst. Brew. 2021, 127, 345–357. DOI: 10.1002/jib.673.
  • European Brewery Convention. Analytica-EBC. Fachverlag Hans Carl: Nürnberg, 2010.
  • Kaneda, H.; Kobayashi, N.; Furusho, S.; Sahara, H.; Koshino, S. Reducing Activity and Flavor Stability of Beer. Tech. Q. Master Brew. Assoc. Am. 1995, 32, 90–94.
  • Dijken, J. P.; Scheffers, W. Redox Balances in the Metabolism of Sugars by Yeasts. FEMS Microbiol. Rev. 1986, 32, 199–224. DOI: 10.1111/j.1574-6968.1986.tb01194.x.
  • Frick, O.; Wittmann, C. Characterization of the Metabolic Shift between Oxidative and Fermentative Growth in Saccharomyces cerevisiae by Comparative 13C Flux Analysis. Microb. Cell Fact. 2005, 4, 1–16.
  • Kaneda, H.; Kano, Y.; Koshino, S.; Ohya-Nishiguchi, H. Behavior and Role of Iron Ions in Beer Deterioration. J. Agric. Food Chem. 1992, 40, 2102–2107. DOI: 10.1021/jf00023a013.
  • Pohl, P. Metals in Beer. In Beer in Health and Disease Prevention; Preedy, V. R., Ed.; Academic Press: Cambridge, Massachusetts, 2008; pp 349–358.
  • Svendsen, R.; Lund, W. Speciation of Cu, Fe and Mn in Beer Using Ion Exchange Separation and Size-Exclusion Chromatography in Combination with Electrothermal Atomic Absorption Spectrometry. Analyst 2000, 125, 1933–1937. DOI: 10.1039/b005187j.
  • Pires, L. N.; de, S.; Dias, F.; Teixeira, L. S. G. Assessing the Internal Standardization of the Direct Multi-Element Determination in Beer Samples through Microwave-Induced Plasma Optical Emission Spectrometry. Anal. Chim. Acta. 2019, 1090, 31–38. DOI: 10.1016/j.aca.2019.09.033.
  • Asfaw, A.; Wibetoe, G. Direct Analysis of Beer by ICP-AES: A Very Simple Method for the Determination of Cu, Mn and Fe. Microchim. Acta. 2005, 152, 61–68. DOI: 10.1007/s00604-005-0424-6.
  • Bellido-Milla, D.; Oñate-Jaén, A.; Palacios-Santander, J. M.; Palacios-Tejero, D.; Hernández-Artiga, M. P. Beer Digestions for Metal Determination by Atomic Spectrometry and Residual Organic Matter. Microchim. Acta. 2004, 144, 183–190. DOI: 10.1007/s00604-003-0082-5.
  • Hoff, S.; Lund, M. N.; Petersen, M. A.; Jespersen, B. M.; Andersen, M. L. Influence of Malt Roasting on the Oxidative Stability of Sweet Wort. J. Agric. Food Chem. 2012, 60, 5652–5659. DOI: 10.1021/jf300749r.
  • Echavarría, A. P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. DOI: 10.1007/s12393-012-9057-9.
  • Holzmann, A.; Piendl, A. Malt Modification and Mashing Conditions as Factors Influencing the Minerals of Wort. J. Am. Soc. Brew. Chem. 1977, 35, 1–8. DOI: 10.1094/ASBCJ-35-0001.
  • Morgan, B.; Lahav, O. The Effect of pH on the Kinetics of Spontaneous Fe(II) Oxidation by O2 in Aqueous Solution - Basic Principles and a Simple Heuristic Description. Chemosphere 2007, 68, 2080–2084. DOI: 10.1016/j.chemosphere.2007.02.015.
  • Stefánsson, A. Iron (III) Hydrolysis and Solubility at 25 Degrees C. Environ. Sci. Technol. 2007, 41, 6117–6123. DOI: 10.1021/es070174h.
  • Jones, A. M.; Griffin, P. J.; Collins, R. N.; Waite, T. D. Ferrous Iron Oxidation under Acidic Conditions – The Effect of Ferric Oxide Surfaces. Geochim. Cosmochim. Acta 2014, 145, 1–12. DOI: 10.1016/j.gca.2014.09.020.
  • Habschied, K.; Košir, I. J.; Krstanovi, V.; Kumri, G.; Mastanjevic, K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages 2021, 7, 38. DOI: 10.3390/beverages7020038.
  • Lewis, M. J.; Serbia, J. W. Aggregation of Protein and Precipitation by Polyphenol in Mashing. J. Am. Soc. Brew. Chem. 1984, 42, 40–43. DOI: 10.1094/ASBCJ-42-0040.
  • Ajandouz, E. H.; Tchiakpe, L. S.; Dalle Ore, F.; Benajiba, A.; Puigserver, A. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. J. Food Sci. 2001, 66, 926–931. DOI: 10.1111/j.1365-2621.2001.tb08213.x.
  • Martins, S. I. F. S.; Van Boekel, M. A. J. S. Kinetics of the Glucose/Glycine Maillard Reaction Pathways: Influences of pH and Reactant Initial Concentrations. Food Chem. 2005, 92, 437–448. DOI: 10.1016/j.foodchem.2004.08.013.
  • Luo, W.; Abbas, M. E.; Zhu, L.; Deng, K.; Tang, H. Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System. Anal. Chim. Acta. 2008, 629, 1–5. DOI: 10.1016/j.aca.2008.09.009.
  • Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. Degradation of Bisphenol A in Water by the photo-Fenton Reaction. J. Photochem. Photobiol. A Chem. 2004, 162, 297–305. DOI: 10.1016/S1010-6030(03)00374-5.
  • Pagenstecher, M.; Maia, C.; Andersen, M. L. Retention of Iron and Copper during Mashing of Roasted Malts. J. Am. Soc. Brew. Chem 2021, 79, 138–144. DOI: 10.1080/03610470.2020.1795609.
  • Piggott, C. O.; Connolly, A.; Fitzgerald, R. J. Application of Ultrafiltration in the Study of Phenolic Isolates and Melanoidins from Pale and Black Brewers’ Spent Grain. Int. J. Food Sci. Technol. 2014, 49, 2252–2259. DOI: 10.1111/ijfs.12540.
  • Ma, J. F.; Higashitani, A.; Sato, K.; Takeda, K. Genotypic Variation in Fe Concentration of Barley Grain. Soil Sci. Plant Nutr. 2004, 50, 1115–1117. DOI: 10.1080/00380768.2004.10408583.
  • Morales, F. J.; Fernández-Fraguas, C.; Jiménez-Pérez, S. Iron-Binding Ability of Melanoidins from Food and Model Systems. Food Chem. 2005, 90, 821–827. DOI: 10.1016/j.foodchem.2004.05.030.
  • Minihane, A. M.; Rimbach, G. Iron Absorption and the Iron Binding and Anti-Oxidant Properties of Phytic Acid. Int. J. Food Sci. Tech. 2002, 37, 741–748. DOI: 10.1046/j.1365-2621.2002.00619.x.