1,230
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sequentially Pitching Lactic Acid Bacteria and Active Dry Yeasts for Sour Beer Production

ORCID Icon, ORCID Icon & ORCID Icon
Pages 141-149 | Received 31 Aug 2022, Accepted 16 May 2023, Published online: 20 Jun 2023

Literature cited

  • Bossaert, S.; Crauwels, S.; De Rouck, G.; Lievens, B. The Power of Sour – A Review: Old Traditions, New Opportunities. BrewingSci. 2019, 72, 78–88. DOI: 10.23763/BRSC19-10bossaert.
  • Ciosek, A.; Rusiecka, I.; Poreda, A. Sour Beer Production: Impact of Pitching Sequence of Yeast and Lactic Acid Bacteria. J. Inst. Brew. 2020, 126, 53–58. DOI: 10.1002/jib.590.
  • Van Oevelen, D.; Spaepen, M.; Timmermans, P.; Verachtert, H. Microbiological Aspects of Spontaneous Wort Fermentation in the Production of Lambic and Gueuze. J. Inst. Brew. 1977, 83, 356–360. DOI: 10.1002/j.2050-0416.1977.tb03825.x.
  • De Keersmaecker, J. The Mystery of Lambic Beer. Sci. Am. 1996, 275, 74–80. DOI: 10.1038/scientificamerican0896-74.
  • Spitaels, F.; Wieme, A. D.; Janssens, M.; Aerts, M.; Daniel, H. M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS One. 2014, 9, e95384. DOI: 10.1371/journal.pone.0095384.
  • Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K. J. Brettanomyces yeasts – From Spoilage Organisms to Valuable Contributors to Industrial Fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. DOI: 10.1016/j.ijfoodmicro.2015.04.005.
  • De Roos, J.; De Vuyst, L. Microbial Acidification, Alcoholization, and Aroma Production during Spontaneous Lambic Beer Production. J. Sci. Food Agric. 2019, 99, 25–38. DOI: 10.1002/jsfa.9291.
  • Dysvik, A.; Liland, K. H.; Myhrer, K. S.; Westereng, B.; Rukke, E. O.; De Rouck, G.; Wicklund, T. Pre-Fermentation with Lactic Acid Bacteria in Sour Beer Production. J. Inst. Brew. 2019, 125, 342–356. DOI: 10.1002/jib.569.
  • Dysvik, A.; La Rosa, S. L.; Liland, K. H.; Myhrer, K. S.; Østlie, H. M.; De Rouck, G.; Rukke, E. O.; Westereng, B.; Wicklund, T. Co-Fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front Microbiol. 2020, 11, 279. DOI: 10.3389/fmicb.2020.00279.
  • Bokulich, N. A.; Bamforth, C. W.; Mills, D. A. Brewhouse-Resident Microbiota are Responsible for Multi-Stage Fermentation of American Coolship Ale. PLoS One. 2012, 7, e35507. DOI: 10.1371/journal.pone.0035507.
  • Tonsmeire, M. American Sour Beers: Innovative Techniques for Mixed Fermentations; Brewers Publications: Boulder, CO, 2014.
  • Peyer, L. C.; Zarnkow, M.; Jacob, F.; De Schutter, D. P.; Arendt, E. K. Sour Brewing: Impact of Lactobacillus amylovorus FST2.11 on Technological and Quality Attributes of Acid Beers. J. Am. Soc. Brew. Chem. 2017, 75, 207–216. DOI: 10.1094/ASBCJ-2017-3861-01.
  • Osburn, K.; Amaral, J.; Metcalf, S. R.; Nickens, D. M.; Rogers, C. M.; Sausen, C.; Caputo, R.; Miller, J.; Li, H.; Tennessen, J. M.; Bochman, M. L. Primary Souring: A Novel Bacteria-Free Method for Sour Beer Production. Food Microbiol. 2018, 70, 76–84. DOI: 10.1016/j.fm.2017.09.007.
  • Leroy, F.; De Vuyst, L. Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Trends Food Sci. Technol. 2004, 15, 67–78. DOI: 10.1016/j.tifs.2003.09.004.
  • Vriesekoop, F.; Krahl, M.; Hucker, B.; Menz, G. 125th Anniversary Review: Bacteria in Brewing: The Good, the Bad and the Ugly. J. Inst. Brew. 2012, 118, 335–345. DOI: 10.1002/jib.49.
  • Endo, A.; Dicks, L. M. T. Physiology of the LAB. In Lactic Acid Bacteria Biodiversity and Taxonomy. Wilhelm H. Holzapfel, W.H., Wood, J.B., Eds.; Wiley, 2014; pp 13–30. DOI: 10.1002/9781118655252.ch2.
  • Schroeder, L. J.; Iacobellis, M.; Smith, A. H. The Influence of Water and pH on the Reaction between Amino Compounds and Carbohydrates. J. Biol. Chem. 1955, 212, 973–983. DOI: 10.1016/S0021-9258(18)71035-1.
  • Jaskula, B.; Aerts, G.; De Cooman, L. Potential Impact of Medium Characteristics on the Isomerisation of Hop α-Acids in Wort and Buffer Model Systems. Food Chem. 2010, 123, 1219–1226. DOI: 10.1016/j.foodchem.2010.05.090.
  • Kappler, S.; Krahl, M.; Geissinger, C.; Becker, T.; Krottenthaler, M. Degradation of Iso-α-Acids during Wort Boiling. J. Inst. Brew. 2010, 116, 332–338. DOI: 10.1002/j.2050-0416.2010.tb00783.x.
  • Lewis, D. Biological Mash and Wort Acidification. New Brew. 1998, 15, 36–45.
  • Setyawati, R.; Haryanti, P.; Karseno; Erminawati; Tri Yanto. Effect of pH and Temperature on Browning Intensity of Coconut Sugar and Its Antioxidant Activity. Food Res. 2017, 2, 32–38. DOI: 10.26656/fr.2017.2(1).175.
  • Ajandouz, E. H.; Puigserver, A. Nonenzymatic Browning Reaction of Essential Amino Acids: Effect of pH on Caramelization and Maillard Reaction Kinetics. J. Agric. Food Chem. 1999, 47, 1786–1793. DOI: 10.1021/jf980928z.
  • Mishra, S.; Sachan, A.; Vidyarthi, A. S.; Sachan, S. G. Transformation of Ferulic Acid to 4-Vinyl Guaiacol as a Major Metabolite: A Microbial Approach. Rev. Environ. Sci. Biotechnol. 2014, 13, 377–385. DOI: 10.1007/s11157-014-9348-0.
  • Van Beek, S.; Priest, F. G. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation. Appl. Environ. Microbiol. 2000, 66, 5322–5328. DOI: 10.1128/aem.66.12.5322-5328.2000.
  • de las Rivas, B.; Rodríguez, H.; Curiel, J. A.; Landete, J. M.; Muñoz, R. Molecular Screening of Wine Lactic Acid Bacteria Degrading Hydroxycinnamic Acids. J. Agric. Food Chem. 2009, 57, 490–494. DOI: 10.1021/jf803016p.
  • Santamaría, L.; Reverón, I.; de Felipe, F. L.; de las Rivas, B.; Muñoz, R. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols. Appl. Environ. Microbiol. 2018, 84, e01064-18. DOI: 10.1128/AEM.01064-18.
  • Goldhammer, T. The Brewers Handbook: The Complete Book to Brewing Beer. Apex: Virginia, 2008.
  • Jaskula, B.; Goiris, K.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. Hopping Technology in Relation to α-Acids Isomerization Yield, Final Utilization, and Stability of Beer Bitterness. J. Am. Soc. Brew. Chem. 2009, 67, 44–57. DOI: 10.1094/ASBCJ-2009-0106-01.
  • Sidari, R.; Caridi, A. Nutrient Depletion Modifies Cell Wall Adsorption Activity of Wine Yeast. World J. Microbiol. Biotechnol. 2016, 32, 89. DOI: 10.1007/s11274-016-2047-y.
  • Caridi, A.; Sidari, R.; Solieri, L.; Cufari, A.; Giudici, P. Wine Colour Adsorption Phenotype: An Inheritable Quantitative Trait Loci of Yeasts. J. Appl. Microbiol. 2007, 103, 735–742. DOI: 10.1111/j.1365-2672.2007.03301.x.
  • Morata, A.; Loira, I.; Suárez Lepe, J. S. Influence of Yeasts in Wine Colour. Grape and Wine Biotechnology. IntechOpen. 2016, 285. DOI: 10.5772/65055.
  • Kaur, B.; Chakraborty, D.; Kumar, B. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria. Biomed Res. Int. 2013, 2013, 1–6. DOI: 10.1155/2013/590359.
  • Vanbeneden, N.; Delvaux, F.; Delvaux, F. R. Determination of Hydroxycinnamic Acids and Volatile Phenols in Wort and Beer by Isocratic High-Performance Liquid Chromatography Using Electrochemical Detection. J. Chromatogr. A. 2006, 1136, 237–242. DOI: 10.1016/j.chroma.2006.11.001.
  • Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F. R. Formation of 4-Vinyl and 4-Ethyl Derivatives from Hydroxycinnamic Acids: Occurrence of Volatile Phenolic Flavour Compounds in Beer and Distribution of Pad1-Activity among Brewing Yeasts. Food Chem. 2008, 107, 221–230. DOI: 10.1016/j.foodchem.2007.08.008.