561
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact of Erwinia gerundensis as a Biocontrol Agent on the Sanitary and Technological Quality of Barley Malt

ORCID Icon, , , , , , , , , , , , & show all
Pages 120-133 | Received 17 Feb 2023, Accepted 18 May 2023, Published online: 30 Jun 2023

Literature cited

  • The Brewers of Europe. European Beer Trends - Statistics Report; Brussels, Belgium, 2021; pp 1–34.
  • Pitt, J. I.; Hocking, A. D. The Ecology of Fungal Food Spoilage. In Fungi and Food Spoilage; Springer US: Boston, MA, 2009; pp 3–9. ISBN 978-0-387-92207-2.
  • Kawtharani, H. Elucidation of the Interaction Mechanisms between Geotrichum candidum and Fusarium spp for a Biocontrol Optimization to Reduce T-2 Toxin Contamination in the Brewing Process, Doctoral Thesis, University of Toulouse, 2021.
  • Nielsen, L. K.; Jensen, J. D.; Nielsen, G. C.; Jensen, J. E.; Spliid, N. H.; Thomsen, I. K.; Justesen, A. F.; Collinge, D. B.; Jørgensen, L. N. Fusarium Head Blight of Cereals in Denmark: Species Complex and Related Mycotoxins. Phytopathology 2011, 101, 960–969. DOI: 10.1094/PHYTO-07-10-0188.
  • Cosic, J.; Jurkovic, D.; Vrandecic, K.; Simic, B. Pathogenicity of Fusarium Species to Wheat and Barley Ears. Cereal Res. Commun. 2007, 35, 529–532. DOI: 10.1556/CRC.35.2007.2.91.
  • Miedaner, T.; Bolduan, C.; Melchinger, A. E. Aggressiveness and Mycotoxin Production of Eight Isolates Each of Fusarium graminearum and Fusarium verticillioides for Ear Rot on Susceptible and Resistant Early Maize Inbred Lines. Eur. J. Plant Pathol. 2010, 127, 113–123. DOI: 10.1007/s10658-009-9576-2.
  • Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. DOI: 10.3390/foods9020137.
  • Gautier, C.; Pinson-Gadais, L.; Verdal-Bonnin, M.-N.; Ducos, C.; Tremblay, J.; Chéreau, S.; Atanasova, V.; Richard-Forget, F. Investigating the Efficiency of Hydroxycinnamic Acids to Inhibit the Production of Enniatins by Fusarium avenaceum and Modulate the Expression of Enniatins Biosynthetic Genes. Toxins 2020, 12, 735. DOI: 10.3390/toxins12120735.
  • Nazareth, T. d M.; Luz, C.; Torrijos, R.; Quiles, J. M.; Luciano, F. B.; Mañes, J.; Meca, G. Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins (Basel) 2019, 12, 21. DOI: 10.3390/toxins12010021.
  • Lee, H. J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. DOI: 10.1021/acs.jafc.6b04847.
  • Eskola, M.; Kos, G.; Elliott, C. T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited’ FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. DOI: 10.1080/10408398.2019.1658570.
  • McMullen, M. P.; Stack, R. W. Fusarium Head Blight (Scab) of Small Grains. North Dakota Extension Circular 2008, 804, 1–4.
  • Boivin, P.; Malanda, M. Inoculation by Geotrichum candidum during Malting of Cereals or Other Plants. 1999, 1–11.
  • Laitila, A. More Good than Bad: Microbes in Maltings. Brewer Distiller Int. 2008, 4, 52–54.
  • Laitila, A.; Sarlin, T.; Kotaviita, E.; Huttunen, T.; Home, S.; Wilhelmson, A. Yeasts Isolated from Industrial Maltings Can Suppress Fusarium Growth and Formation of Gushing Factors. J. Ind. Microbiol. Biotechnol. 2007, 34, 701–713. DOI: 10.1007/s10295-007-0241-5.
  • Kaur, M. Assuring the Microbial Safety and Quality of Australian Malt and Barley, Doctoral thesis. University of Tasmania, 2010.
  • Lowe, D. P.; Arendt, E. K. The Use and Effects of Lactic Acid Bacteria in Malting and Brewing with Their Relationships to Antifungal Activity, Mycotoxins and Gushing: A Review. J. Inst. Brewing 2004, 110, 163–180. DOI: 10.1002/j.2050-0416.2004.tb00199.x.
  • Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Sachambula, L. Transfer of Fusarium Mycotoxins and ‘Masked’ Deoxynivalenol (Deoxynivalenol-3-Glucoside) from Field Barley through Malt to Beer. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 732–744. DOI: 10.1080/02652030701779625.
  • Piacentini, K. C.; Běláková, S.; Benešová, K.; Pernica, M.; Savi, G. D.; Rocha, L. O.; Hartman, I.; Čáslavský, J.; Corrêa, B. Fusarium Mycotoxins Stability during the Malting and Brewing Processes. Toxins (Basel) 2019, 11, 257. DOI: 10.3390/toxins11050257.
  • Boeira, L. S.; Bryce, J. H.; Stewart, G. G.; Flannigan, B. Inhibitory Effect of Fusarium Mycotoxins on Growth of Brewing Yeasts. 2. Deoxynivalenol and Nivalenol*. J. Inst. Brew. 1999, 105, 376–381. DOI: 10.1002/j.2050-0416.1999.tb00028.x.
  • Billard, J. Contribution à l’identification de Facteurs Impliqués Dans Le Phénomène de Giclage de La Bière En Vue Du Développement d’une Méthode de Détection Précoce Du ‘Risque Giclage’, PhD Thesis, Université de Lorraine, 2017.
  • Reis, J. A.; Paula, A. T.; Casarotti, S.; Penna, A. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng. Rev. 2012, 4, 124–140. DOI: 10.1007/s12393-012-9051-2.
  • Laitila, A.; Sweins, H.; Vilpola, A.; Kotaviita, E.; Olkku, J.; Home, S.; Haikara, A. Lactobacillus plantarum and Pediococcus pentosaceus Starter Cultures as a Tool for Microflora Management in Malting and for Enhancement of Malt Processability. J. Agric. Food Chem. 2006, 54, 3840–3851. DOI: 10.1021/jf052979j.
  • Franco, T. S.; Garcia, S.; Hirooka, E. Y.; Ono, Y. S.; Dos Santos, J. S. Lactic Acid Bacteria in the Inhibition of Fusarium graminearum and Deoxynivalenol Detoxification. J. Appl. Microbiol. 2011, 111, 739–748. DOI: 10.1111/j.1365-2672.2011.05074.x.
  • Suchfort, R. G. Biological Detoxification of Enniatins, Doctoral Thesis, University of Göttingen, Göttingen, Germany, 2016.
  • Peyer, L. C.; De Kruijf, M.; O’Mahony, J.; De Colli, L.; Danaher, M.; Zarnkow, M.; Jacob, F.; Arendt, E. K. Lactobacillus brevis R2Δ as Starter Culture to Improve Biological and Technological Qualities of Barley Malt. Eur. Food Res. Technol. 2017, 243, 1363–1374. DOI: 10.1007/s00217-017-2847-9.
  • Schmidt, M.; Lynch, K. M.; Zannini, E.; Arendt, E. K. Fundamental Study on the Improvement of the Antifungal Activity of Lactobacillus reuteri R29 through Increased Production of Phenyllactic Acid and Reuterin. Food Control 2018, 88, 139–148. DOI: 10.1016/j.foodcont.2017.11.041.
  • Pleadin, J.; Frece, J.; Markov, K. Mycotoxins in Food and Feed. Adv. Food Nutr. Res. 2019, 89, 297–345. DOI: 10.1016/bs.afnr.2019.02.007.
  • Conte, G.; Fontanelli, M.; Galli, F.; Cotrozzi, L.; Pagni, L.; Pellegrini, E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins 2020, 12, 486. DOI: 10.3390/toxins12080486.
  • Morimura, H.; Ito, M.; Yoshida, S.; Koitabashi, M.; Tsushima, S.; Camagna, M.; Chiba, S.; Takemoto, D.; Kawakita, K.; Sato, I. In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria. Toxins 2020, 12, 399. DOI: 10.3390/toxins12060399.
  • Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin—the Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. DOI: 10.3390/molecules26226868.
  • Vekiru, E.; Hametner, C.; Mitterbauer, R.; Rechthaler, J.; Adam, G.; Schatzmayr, G.; Krska, R.; Schuhmacher, R. Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a Novel Nonestrogenic Metabolite. Appl. Environ. Microbiol. 2010, 76, 2353–2359. DOI: 10.1128/AEM.01438-09.
  • Petruzzi, L.; Bevilacqua, A.; Corbo, M. R.; Garofalo, C.; Baiano, A.; Sinigaglia, M. Selection of Autochthonous Saccharomyces cerevisiae Strains as Wine Starters Using a Polyphasic Approach and Ochratoxin a Removal. J. Food Prot. 2014, 77, 1168–1177. DOI: 10.4315/0362-028X.JFP-13-384.
  • Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I. P.; Speijers, G.; Chiodini, A.; Recker, T.; Dussort, P. Impact of Food Processing and Detoxification Treatments on Mycotoxin Contamination. Mycotoxin Res. 2016, 32, 179–205. DOI: 10.1007/s12550-016-0257-7.
  • Chlebicz, A.; Śliżewska, K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins. 2020, 12, 289–301. DOI: 10.1007/s12602-018-9512-x.
  • Ng, C. A.; Pernica, M.; Yap, J.; Belakova, S.; Vaculova, K.; Branyik, T. Biocontrol Effect of Pythium oligandrum on Artificial Fusarium culmorum Infection during Malting of Wheat. J. Cereal Sci. 2021, 100, 103258. DOI: 10.1016/j.jcs.2021.103258.
  • Gnonlonfoun, E.; Fotin, G.; Risler, A.; Elfassy, A.; Schwebel, S.; Schmitt, M.; Borges, F.; Mangavel, C.; Revol-Junelles, A.-M.; Fick, M.; et al. Inhibition of the Growth of Fusarium tricinctum and Reduction of Its Enniatin Production by Erwinia gerundensis Isolated from Barley Kernels. J. Am. Soc. Brew. Chem. 2023, 81, 340–350. DOI: 10.1080/03610470.2022.2041970.
  • Directive générale mycologie. Toutes Céréales, Détection et Identification Des Espèces de Fusarium spp. et Microdochium nivale sur grains de céréales par isolement mycologique semi-sélectif et étude microbiologique (Ref. MH.03-16: Version B) 2008.
  • Liu, T.; Kang, J.; Liu, L.; Hu, X.; Wang, X.; Li, X.; Ma, Z.; Ren, T. Microbial Community Diversity of Traditional Dough Starter (Jiaozi) from Two Provinces in Northwest China. Ann. Microbiol. 2020, 70, 18. DOI: 10.1186/s13213-020-01544-1.
  • Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. DOI: 10.1093/bioinformatics/btx791.
  • EBC Analysis Committee Analytica-EBC 5th ed.; Verlag Hans Carl: Nürnberg, Germany, 1998; ISBN 978-3-418-00759-5.
  • Stadler, D.; Berthiller, F.; Suman, M.; Schuhmacher, R.; Krska, R. Novel Analytical Methods to Study the Fate of Mycotoxins during Thermal Food Processing. Anal. Bioanal. Chem. 2020, 412, 9–16. DOI: 10.1007/s00216-019-02101-9.
  • Pallarés, N.; Sebastià, A.; Martínez-Lucas, V.; Queirós, R.; Barba, F. J.; Berrada, H.; Ferrer, E. High Pressure Processing Impact on Emerging Mycotoxins (ENNA, ENNA1, ENNB, ENNB1) Mitigation in Different Juice and Juice-Milk Matrices. Foods 2022, 11, 190. DOI: 10.3390/foods11020190.
  • Roig, M.; Meca, G.; Ferrer, E.; Mañes, J. Reduction of the Enniatins A, A1, B, B1 by an in Vitro Degradation Employing Different Strains of Probiotic Bacteria: Identification of Degradation Products by LC-MS-LIT. Toxicon 2013, 70, 44–53. DOI: 10.1016/j.toxicon.2013.04.001.
  • Khan, M. R.; Doohan, F. M. Bacterium-Mediated Control of Fusarium Head Blight Disease of Wheat and Barley and Associated Mycotoxin Contamination of Grain. Biol. Control 2009, 48, 42–47. DOI: 10.1016/j.biocontrol.2008.08.015.
  • Meca, G.; Roig, M.; Ferrer, E.; Mañes, J. Degradation of the Bioactive Compounds Enniatins A, A1, B, B1 Employing Different Strains of Bacillus subtilis. J Food Process Technol 2014, 05, 334. DOI: 10.4172/2157-7110.1000334.
  • Meca, G.; Ritieni, A.; Mañes, J. Reduction in Vitro of the Minor Fusarium Mycotoxin Beauvericin Employing Different Strains of Probiotic Bacteria. Food Control 2012, 28, 435–440. DOI: 10.1016/j.foodcont.2012.04.002.
  • Awad, W. A.; Ghareeb, K.; Bohm, J.; Zentek, J. Decontamination and Detoxification Strategies for the Fusarium Mycotoxin Deoxynivalenol in Animal Feed and the Effectiveness of Microbial Biodegradation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 510–520. DOI: 10.1080/19440040903571747.
  • Shima, J.; Takase, S.; Takahashi, Y.; Iwai, Y.; Fujimoto, H.; Yamazaki, M.; Ochi, K. Novel Detoxification of the Trichothecene Mycotoxin Deoxynivalenol by a Soil Bacterium Isolated by Enrichment Culture. Appl. Environ. Microbiol. 1997, 63, 3825–3830. DOI: 10.1128/aem.63.10.3825-3830.1997.
  • Ikunaga, Y.; Sato, I.; Grond, S.; Numaziri, N.; Yoshida, S.; Yamaya, H.; Hiradate, S.; Hasegawa, M.; Toshima, H.; Koitabashi, M.; et al. Nocardioides Sp. Strain WSN05-2, Isolated from a Wheat Field, Degrades Deoxynivalenol, Producing the Novel Intermediate 3-Epi-Deoxynivalenol. Appl. Microbiol. Biotechnol. 2011, 89, 419–427. DOI: 10.1007/s00253-010-2857-z.
  • He, J. W.; Bondy, G. S.; Zhou, T.; Caldwell, D.; Boland, G. J.; Scott, P. M. Toxicology of 3-Epi-Deoxynivalenol, a Deoxynivalenol-Transformation Product by Devosia mutans 17-2-E-8. Food Chem. Toxicol. 2015, 84, 250–259. DOI: 10.1016/j.fct.2015.09.003.
  • Wang, Y.; Wang, G.; Dai, Y.; Wang, Y.; Lee, Y.-W.; Shi, J.; Xu, J. Biodegradation of Deoxynivalenol by a Novel Microbial Consortium. Front. Microbiol. 2019, 10, 2964. DOI: 10.3389/fmicb.2019.02964.
  • Yi, P.-J.; Pai, C.-K.; Liu, J.-R. Isolation and Characterization of a Bacillus licheniformis Strain Capable of Degrading Zearalenone. World J. Microbiol. Biotechnol. 2011, 27, 1035–1043. DOI: 10.1007/s11274-010-0548-7.
  • Lei, Y. P.; Zhao, L. H.; Ma, Q. G.; Zhang, J. Y.; Zhou, T.; Gao, C. Q.; Ji, C. Degradation of Zearalenone in Swine Feed and Feed Ingredients by Bacillus subtilis ANSB01G. World Mycotoxin Journal 2014, 7, 143–151. DOI: 10.3920/WMJ2013.1623.
  • Tan, H.; Hu, Y.; He, J.; Wu, L.; Liao, F.; Luo, B.; He, Y.; Zuo, Z.; Ren, Z.; Zhong, Z.; et al. Zearalenone Degradation by Two Pseudomonas Strains from Soil. Mycotoxin Res. 2014, 30, 191–196. DOI: 10.1007/s12550-014-0199-x.
  • Cserháti, M.; Kriszt, B.; Krifaton, C.; Szoboszlay, S.; Háhn, J.; Tóth, S.; Nagy, I.; Kukolya, J. Mycotoxin-Degradation Profile of Rhodococcus Strains. Int. J. Food Microbiol. 2013, 166, 176–185. DOI: 10.1016/j.ijfoodmicro.2013.06.002.
  • Ksieniewicz-Woźniak, E.; Bryła, M.; Waśkiewicz, A.; Yoshinari, T.; Szymczyk, K. Selected Trichothecenes in Barley Malt and Beer from Poland and an Assessment of Dietary Risks Associated with Their Consumption. Toxins (Basel) 2019, 11, 715. DOI: 10.3390/toxins11120715.
  • Venkatesh, N.; Keller, N. P. Mycotoxins in Conversation with Bacteria and Fungi. Front. Microbiol. 2019, 10, 403. DOI: 10.3389/fmicb.2019.00403.
  • Ng, C. A.; Poštulková, M.; Matoulková, D.; Psota, V.; Hartman, I.; Branyik, T. Methods for Suppressing Fusarium Infection during Malting and Their Effect on Malt Quality. Czech J. Food Sci. 2021, 39, 340–359. DOI: 10.17221/221/2020-CJFS.
  • EFSA CONTAM Scientific Opinion on the Risks to Human and Animal Health Related to the Presence of Beauvericin and Enniatins in Food and Feed. EFSA J. 2014, 12, 174. DOI: 10.2903/j.efsa.2014.3802.
  • Prosperini, A.; Berrada, H.; Ruiz, M. J.; Caloni, F.; Coccini, T.; Spicer, L. J.; Perego, M. C.; Lafranconi, A. A Review of the Mycotoxin Enniatin B. Front. Public Health. 2017, 5, 304. DOI: 10.3389/fpubh.2017.00304.
  • Postulkova, M.; Rezanina, J.; Fiala, J.; Ruzicka, M. C.; Dostalek, P.; Branyik, T. Suppression of Fungal Contamination by Pythium oligandrum during Malting of Barley. J. Inst. Brew. 2018, 124, 336–340. DOI: 10.1002/jib.518.
  • European Union Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances, 2011.
  • Laitila, A.; Tapani, K.; Haikara, A. Lactic Acid Starter Cultures for Prevention of the Formation of Fusarium Mycotoxins during Malting. In Proceedings of the European Brewery Convention Congress. Oxford University Press, 1997; pp 137–144.
  • Suzuki, K. 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. J. Inst. Brewing 2011, 117, 131–155. DOI: 10.1002/j.2050-0416.2011.tb00454.x.
  • Jamar, C.; Du Jardin, P.; Fauconnier, M.-L. Cell Wall Polysaccharides Hydrolysis of Malting Barley (Hordeum vulgare L.): A Review. Biotechnol. Agron. Soc. Environ 2011, 15, 301–313.
  • Steiner, E.; Auer, A.; Becker, T.; Gastl, M. Comparison of Beer Quality Attributes between Beers Brewed with 100% Barley Malt and 100% Barley Raw Material. J. Sci. Food Agric. 2012, 92, 803–813. DOI: 10.1002/jsfa.4651.
  • Brazil, C.; Oliveira, D. d.; Duarte, R. A.; Galo, J. M.; Lucchetta, L.; Santos, E. D. C. D.; Hashimoto, E. H. β-Glucanase Addition in Brewing Malt Produced by Reduced Time of Germination. Braz. Arch. Biol. Technol. 2019, 62, 15. DOI: 10.1590/1678-4324-2019180315.
  • Habschied, K.; Lalić, A.; Horvat, D.; Mastanjević, K.; Lukinac, J.; Jukić, M.; Krstanović, V. β-Glucan Degradation during Malting of Different Purpose Barley Varieties. Fermentation 2020, 6, 21. DOI: 10.3390/fermentation6010021.
  • Gentry, T. J.; Fuhrmann, J. J.; Zuberer, D. A. Principles and Applications of Soil Microbiology, 3rd ed.; Elsevier Science: Cambridge, MA, 2021; ISBN 978-0-12-820202-9.
  • Krstanović, V.; Mastanjević, K.; Nedović, V.; Mastanjević, K. The Influence of Wheat Malt Quality on Final Attenuation Limit of Wort. Fermentation 2019, 5, 89. DOI: 10.3390/fermentation5040089.