206
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Kinetic Modeling of Mead Production

, , , & ORCID Icon
Pages 170-178 | Received 02 Apr 2023, Accepted 19 Jun 2023, Published online: 25 Jul 2023

Literature cited

  • Papuga, S.; Pećanac, I.; Stojković, M.; Savić, A.; Velemir, A. Mead Fermentation Parameters: Optimization by Response Surface Methodology. Foods Raw Mater. 2022, 10, 137–147. DOI: 10.21603/2308-4057-2022-1-137-147.
  • Pereira, A. P.; Oliveira, J. M.; Mendes-Ferreira, A.; Estevinho, L. M.; Mendes-Faia, A. Mead and Other Fermented Beverages. Curr. Dev. Biotechnol. Bioeng. Food Beverages Ind. 2017, 14, 407–434.
  • Felipe, A. L. D.; Souza, C. O.; Santos, L. F.; Cestari, A. Synthesis and Characterization of Mead: From the past to the Future and Development of a New Fermentative Route. J. Food Sci. Technol. 2019, 56, 4966–4971. DOI: 10.1007/s13197-019-03968-3.
  • Solieri, L.; Giudici, P. Vinegars of the World. 2009, 1–297.
  • Chitarrini, G.; Debiasi, L.; Stuffer, M.; Ueberegger, E.; Zehetner, E.; Jaeger, H.; Robatscher, P.; Conterno, L. Volatile Profile of Mead Fermenting Blossom Honey and Honeydew Honey with or without Ribes Nigrum. Molecules. 2020, 25, 1818. DOI: 10.3390/molecules25081818.
  • Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M. C. Contribution of Botanical Origin and Sugar Composition of Honeys on the Crystallization Phenomenon. Food Chem. 2014, 149, 84–90. DOI: 10.1016/j.foodchem.2013.10.097.
  • Mărgăoan, R.; Cornea-Cipcigan, M.; Topal, E.; Kösoğlu, M. Impact of Fermentation Processes on the Bioactive Profile and Health-Promoting Properties of Bee Bread, Mead and Honey Vinegar. Processes. 2020, 8, 1081. DOI: 10.3390/pr8091081.
  • Schwarz, L. V.; Marcon, A. R.; Delamare, A. P. L.; Echeverrigaray, S. Influence of Nitrogen, Minerals and Vitamins Supplementation on Honey Wine Production Using Response Surface Methodology. J. Apic. Res. 2021, 60, 57–66. DOI: 10.1080/00218839.2020.1793277.
  • Claudio, H. Plan De Negocios Para Empresa De Hidromiel (Meadery), Universidad de Chile, 2020. https://repositorio.uchile.cl/handle/2250/177296.
  • Herbert, J. American Mead Maker Summer 2016. Am. Mead Mak. J. 2016, 16, 26–34.
  • Rizzi, R. Market Overview Vinos y Espumantes; Nielsen Co, 2018.
  • Fortune Business insights, Mead Beverages Market Size, Share & Industry Analysis, By Type (Fruit Mead and Traditional Mead), Distribution Channel(Supermarkets/Hypermarkets, Specialty Stores, Online Sales Channels, and Others), and Regional Forecast, 2021–2028, 2022, 160. https://www.fortunebusinessinsights.com/mead-market-102278.
  • Ministerio de Agricultura y Ganadería, Ministerio de Agricultura y Ganadería realiza registro de apicultores, Minist. Agric. y Ganad. 2017. https://www.agricultura.gob.ec/ministerio-de-agricultura-y-ganaderia-realiza-registro-de-apicultores-2/.
  • Gomes, T.; Barradas, C.; Dias, T.; Verdiaf, J.; Morais, J. S.; Ramalhosa, E.; Estevinrte, L. 2010 Mead Production: Comparison of Different Production Scales (Preliminary Results). Presented at 6th International Conference on Simulation and Modelling in the Food Bio-Industry 2010, FOODSIM 2010, 244–247.
  • Ramalhosa, E.; Gomes, T.; Pereira, A. P.; Dias, T.; Estevinho, L. M. Mead Production: Tradition versus Modernity, 1st ed.; Elsevier Inc., 2011.
  • Benetole, B. M.; Gomes, W. P. C.; Generoso, E. P.; de Campos, S. V.; Harder, L. N. C.; Arthur, V.; Harder, M. N. C. Mead of Natural Fermentation. J. Microbiol. Biotechnol. Food Sci. 2021, 11, 1–6.
  • Kuś, P. M.; Czabaj, S.; Jerković, I. Comparison of Volatile Profiles of Meads and Related Unifloral Honeys: Traceability Markers. Molecules. 2022, 27, 4558. DOI: 10.3390/molecules27144558.
  • Starowicz, M.; Granvogl, M. Trends in Food Science & Technology an Overview of Mead Production and the Physicochemical, Toxicological, and Sensory Characteristics of Mead with a Special Emphasis on Flavor. Trends Food. Sci. Technol. 2020, 106, 402–416. DOI: 10.1016/j.tifs.2020.09.006.
  • Li, R.; Sun, Y. Effects of Honey Variety and Non-Saccharomyces cerevisiae on the Flavor Volatiles of Mead. J. Am. Soc. Brew. Chem. 2019, 77, 40–53. DOI: 10.1080/03610470.2018.1546072.
  • Pereira, A. P.; Mendes-Ferreira, A.; Dias, L. G.; Oliveira, J. M.; Estevinho, L. M.; Mendes-Faia, A. Volatile Composition and Sensory Properties of Mead. Microorganisms. 2019, 7, 404. DOI: 10.3390/microorganisms7100404.
  • Roldán, A.; Van Muiswinkel, G. C. J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of Pollen Addition on Mead Elaboration: Physicochemical and Sensory Characteristics. Food Chem. 2011, 126, 574–582. DOI: 10.1016/j.foodchem.2010.11.045.
  • Iglesias, A.; Pascoal, A.; Choupina, A. B.; Carvalho, C. A.; Feás, X.; Estevinho, L. M. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules. 2014, 19, 12577–12590. DOI: 10.3390/molecules190812577.
  • Starowicz, M.; Granvogl, M. Effect of Wort Boiling on Volatiles Formation and Sensory Properties of Mead. Molecules. 2022, 27, 710. DOI: 10.3390/molecules27030710.
  • Zhang, Y.; Ai, Y. Q.; Wu, Q.; Li, C. F.; Chen, W. X. Optimization of Fermentation Conditions of Mead by Response Surface Methodology. AMR. 2014, 881–883, 789–792. DOI: 10.4028/www.scientific.net/AMR.881-883.789.
  • Moodley, P.; Gueguim Kana, E. B. Bioethanol Production from Sugarcane Leaf Waste: Effect of Various Optimized Pretreatments and Fermentation Conditions on Process Kinetics. Biotechnol. Rep. (Amst). 2019, 22, e00329. DOI: 10.1016/j.btre.2019.e00329.
  • Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B. A.; Del Rio-Chanona, E. A.; Zhang, D. Machine Learning for Biochemical Engineering: A Review. Biochem. Eng. J. 2021, 172, 108054. DOI: 10.1016/j.bej.2021.108054.
  • Alvarez-Ramirez, J.; Meraz, M.; Jaime Vernon-Carter, E. A Theoretical Derivation of the Monod Equation with a Kinetics Sense. Biochem. Eng. J. 2019, 150, 107305. DOI: 10.1016/j.bej.2019.107305.
  • Blanco, A. Modelamineto cinético de la fermentación alcohólica de miel de abejas a diferentes escalas de producción, 2016, 149. http://www.bdigital.unal.edu.co/56557/.
  • Nielsen, J. Bioreaction Engineering Principles, 2014.
  • Duarte Torres, A. Evaluación de los parámetros cinéticos de la ecuación de Monod. Ing. Inv. 1996, 33, 123–138. DOI: 10.15446/ing.investig.n33.20908.
  • Verhulst, P. F. Notice sur la loi que la population poursuit dans son accroissement, Corresp. Mathématique Phys. 1838, 10, 113–121.
  • Phukoetphim, N.; Salakkam, A.; Laopaiboon, P.; Laopaiboon, L. Kinetic models for batch ethanol production from sweet Sorghum juice under normal and high gravity fermentations: Logistic and modified gompertz models. J. Biotechnol. 2017, 243, 69–75. DOI: 10.1016/j.jbiotec.2016.12.012.
  • Wachenheim, D. E.; Patterson, J. A.; Ladisch, M. R. Analysis of the Logistic Function Model: Derivation and Applications Specific to Batch Cultured Microorganisms. Bioresour. Technol. 2003, 86, 157–164. DOI: 10.1016/s0960-8524(02)00149-9.
  • Muloiwa, M.; Nyende-Byakika, S.; Dinka, M. Comparison of Unstructured Kinetic Bacterial Growth Models. South African J. Chem. Eng. 2020, 33, 141–150. DOI: 10.1016/j.sajce.2020.07.006.
  • Eifert, J. D. Predictive Modeling of the Aerobic Growth, 1994.
  • Cuenca, M.; Blanco, A.; Quicazán, M.; Zuluaga-Domínguez, C. Optimization and Kinetic Modeling of Honey Fermentation for Laboratory and Pilot-Scale Mead Production. J. Am. Soc. Brew. Chem. 2022, 80, 248–257. DOI: 10.1080/03610470.2021.1966590.
  • Küçükaydın, S.; Tel-Çayan, G.; Çayan, F.; Taş-Küçükaydın, M.; Eroğlu, B.; Duru, M. E.; Öztürk, M. Characterization of Turkish Astragalus Honeys according to Their Phenolic Profiles and Biological Activities with a Chemometric Approach. Food Biosci. 2023, 53, 102507. DOI: 10.1016/j.fbio.2023.102507.
  • Noriega-Medrano, L. J.; Vega-Estrada, J.; Ortega-López, J.; Ruiz-Medrano, R.; Cristiani-Urbina, E.; Montes-Horcasitas, M. D. C. Alternative Non-Chromatographic Method for Alcohols Determination in Clostridium acetobutylicum Fermentations. J. Microbiol. Methods 2016, 126, 48–53. DOI: 10.1016/j.mimet.2016.05.001.
  • Vela Arévalo, V.; Rodríguez Feliciano, M. Á.; Hernández Balboa, M. Á.; Valdez Enríquez, V. H. Propuesta de un método económico para la cuantificación de alcohol etílico. Bioquimia. 2004, 29, 2.
  • Delgado-Noboa, J.; Bernal, T.; Soler, J.; Peña, J. Á. Kinetic modeling of batch bioethanol production from CCN-51 Cocoa Mucilage. J. Taiwan Inst. Chem. Eng. 2021, 128, 169–175. DOI: 10.1016/j.jtice.2021.08.040.
  • Połomska, X.; Wojtatowicz, M.; Zarowska, B.; Szołtysik, M.; Chrzanowska, J. Freeze-Drying Preservation of Yeast Adjunct Cultures for Cheese Production. Polish J. Food Nutr. Sci. 2012, 62, 143–150. DOI: 10.2478/v10222-011-0045-1.
  • Kosuke, I. Modeling and Simulation. In Theory and Practice in Microbial Enhanced Oil Recovery; K.S. Lee, T.-H. Kwon, T. Park, M.S. Jeong, Eds.; Gulf Professional Publishing, 2020; pp 109–168. https://doi.org/10.1016/B978-0-12-819983-1.00004-1.
  • Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors Affecting Ethanol Fermentation Using Saccharomyces cerevisiae BY4742. Biomass Bioenergy. 2012, 47, 395–401. DOI: 10.1016/j.biombioe.2012.09.019.
  • Zhang, Q.; Wu, D.; Lin, Y.; Wang, X.; Kong, H.; Tanaka, S. Substrate and Product Inhibition on Yeast Performance in Ethanol Fermentation. Energy Fuels. 2015, 29, 1019–1027. DOI: 10.1021/ef502349v.
  • Grassi, S.; Amigo, J. M.; Lyndgaard, C. B.; Foschino, R.; Casiraghi, E. Beer Fermentation: Monitoring of Process Parameters by FT-NIR and Multivariate Data Analysis. Food Chem. 2014, 155, 279–286. DOI: 10.1016/j.foodchem.2014.01.060.
  • Uwaha, M. Growth Kinetics: Basics of Crystal Growth Mechanisms. Handb. Cryst. Growth Second Ed. 2015, 1, 359–399.
  • Stanbury, P. F.; Whitaker, A.; Hall, S. J. Microbial Growth Kinetics. Princ. Ferment. Technol. 2017, 21–74. DOI: 10.1016/b978-0-08-099953-1.00002-8.
  • Walker, G. M.; Walker, R. S. K. Enhancing Yeast Alcoholic Fermentations; Elsevier Ltd, 2018.
  • Pereira, A. P.; Mendes-Ferreira, A.; Oliveira, J. M.; Estevinho, L. M.; Mendes-Faia, A. High-Cell-Density Fermentation of Saccharomyces cerevisiae for the Optimisation of Mead Production. Food Microbiol. 2013, 33, 114–123. DOI: 10.1016/j.fm.2012.09.006.
  • Ahmad, F.; Jameel, A. T.; Kamarudin, M. H.; Mel, M. Study of Growth Kinetic and Modeling of Ethanol Production by Saccharomyces cerevisae. African J. Biotechnol. 2011, 10, 18842–18846.
  • Dodić, J. M.; Vučurović, D. G.; Dodić, S. N.; Grahovac, J. A.; Popov, S. D.; Nedeljković, N. M. Kinetic Modelling of Batch Ethanol Production from Sugar Beet Raw Juice. Appl. Energy. 2012, 99, 192–197. DOI: 10.1016/j.apenergy.2012.05.016.
  • Mendes-Ferreira, A.; Mendes-Faia, A.; Leão, C. Growth and Fermentation Patterns of Saccharomyces cerevisiae under Different Ammonium Concentrations and Its Implications in Winemaking Industry. J. Appl. Microbiol. 2004, 97, 540–545. DOI: 10.1111/j.1365-2672.2004.02331.x.
  • Srimachai, T.; Nuithitikul, K.; O-Thong, S.; Kongjan, P.; Panpong, K. Optimization and Kinetic Modeling of Ethanol Production from Oil Palm Frond Juice in Batch Fermentation; Elsevier B.V., 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.