688
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The Black Gap: Understanding the Potential Roles of Black Fungal-Derived Enzymes in Malting and Brewing Quality: A Review

ORCID Icon, , ORCID Icon &
Pages 93-108 | Received 23 May 2023, Accepted 04 Aug 2023, Published online: 15 Sep 2023

Literature cited

  • Geißinger, C.; Whitehead, I.; Hofer, K.; Heß, M.; Habler, K.; Becker, T.; Gastl, M. Influence of Fusarium avenaceum Infections on Barley Malt: Monitoring Changes in the Albumin Fraction of Barley during the Malting Process. Int. J. Food Microbiol. 2019, 293, 7–16. DOI: 10.1016/j.ijfoodmicro.2018.12.026.
  • Sarlin, T.; Laitila, A.; Pekkarinen, A.; Haikara, A. Effects of Three Fusarium Species on the Quality of Barley and Malt. J. Am. Soc. Brew. Chemists. 2005, 63, 43–49. DOI: 10.1094/ASBCJ-63-0043.
  • Schwarz, P. B.; Jones, B. L.; Steffenson, B. J. Enzymes Associated with Fusarium Infection of Barley. J. Am. Soc. Brew. Chemists. 2002, 60, 130–134. DOI: 10.1094/ASBCJ-60-0130.
  • Rabie, C. J.; Lübben, A.; Marais, G. J.; van Jansen Vuuren, H. Enumeration of Fungi in barley. Int. J. Food Microbiol. 1997, 35, 117–127. DOI: 10.1016/S0168-1605(96)01210-X.
  • Korpinen, E. L. Studies on Stachybotrys alternans. I. Isolation of Toxicogenic Strains from Finnish Grains and Feeds. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. Immunol. 1973, 81, 191–197. DOI: 10.1111/j.1699-0463.1973.tb00210.x.
  • Flannigan, B. Microflora of Dried Barley Grain. Trans. Br. Mycol. Soc. 1969, 53, 371–379. DOI: 10.1016/S0007-1536(69)80095-1.
  • Krasauskas, A. Fungi in Malting Barley Grain and Malt Production. BIOLOGIJA. 2017, 63, 283–288. DOI: 10.6001/biologija.v63i3.3583.
  • Lee, H. J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. DOI: 10.1021/acs.jafc.6b04847.
  • Domsch, K. H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi, second printing; Academic Press: London, Orlando, New York, San Diego, Austin, Boston, Tokyo, Sydney, Toronto, 1986.
  • Flannigan, B. The Microbiota of Barley and Malt. In Brewing Microbiology; Priest, F.G., Campbell, I., Eds.; Springer, Boston, MA, 2003; https://doi.org/10.1007/978-1-4419-9250-5_4.
  • Narziss, L.; Back, W. Die Bierbrauerei: Band 1 – Die Technologie der Malzbereitung; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, 2012; Vol. 8.
  • Back, W. Brewing Techniques in Practice: An In-depth Review of Beer Production with Problem Solving Strategies; Fachverlag Hans Carl: Nürnberg, 2019.
  • Juste, A.; Malfliet, S.; Lenaerts, M.; Cooman, L. de; Aerts, G.; Willems, K. A.; Lievens, B. Microflora during Malting of Barley: Overview and Impact on Malt Quality. Brew. Sci. 2011, 64, 22–31.
  • Bretträger, M.; Becker, T.; Gastl, M. Screening of Mycotoxigenic Fungi in Barley and Barley Malt (Hordeum vulgare L.) Using Real-Time PCR-A Comparison between Molecular Diagnostic and Culture Technique. Foods (Basel, Switzerland). 2022, 11, 1149. DOI: 10.3390/foods11081149.
  • Habler, K.; Hofer, K.; Geißinger, C.; Schüler, J.; Hückelhoven, R.; Hess, M.; Gastl, M.; Rychlik, M. Fate of Fusarium Toxins during the Malting Process. J. Agric. Food Chem. 2016, 64, 1377–1384. DOI: 10.1021/acs.jafc.5b05998.
  • Warnock, D. W.; Preece, T. F. Location and Extent of Fungal Mycelium in Grains of Barley. Trans. Br. Mycol. Soc. 1971, 56, 267–273. DOI: 10.1016/S0007-1536(71)80038-4.
  • Laca, A.; Mousia, Z.; Dı́az, M.; Webb, C.; Pandiella, S. S. Distribution of Microbial Contamination within Cereal Grains. J. Food Eng. 2006, 72, 332–338. DOI: 10.1016/j.jfoodeng.2004.12.012.
  • Noots, I.; Derycke, V.; Cornelis, K.; Michiels, C.; Delcour, J. A.; Delrue, R.; Keersmaeker, J. de; Coppens, T. Degradation of Starchy Endosperm Cell Walls in Non Germinating Sterilized Barley by Fungi. J. Agric. Food Chem. 2001, 49, 975–981. DOI: 10.1021/jf001045m.
  • Back, W. Ausgewählte Kapitel der Brauereitechnologie; Fachverlag Hans Carl: Nürnberg, 2016.
  • Holtekjølen, A. K.; Uhlen, A. K.; Bråthen, E.; Sahlstrøm, S.; Knutsen, S. H. Contents of Starch and Non-Starch Polysaccharides in Barley Varieties of Different Origin. Food Chem. 2006, 94, 348–358. DOI: 10.1016/j.foodchem.2004.11.022.
  • Hennemann, M.; Gastl, M.; Becker, T. Inhomogeneity in the Lauter Tun: A Chromatographic View. Eur. Food Res. Technol. 2019, 245, 521–533. DOI: 10.1007/s00217-018-03226-4.
  • Lynch, K. M.; Strain, C. R.; Johnson, C.; Patangia, D.; Stanton, C.; Koc, F.; Gil-Martinez, J.; O'Riordan, P.; Sahin, A. W.; Ross, R. P. ; et al. Extraction and Characterisation of Arabinoxylan from Brewers Spent Grain and Investigation of Microbiome Modulation Potential. Eur. J. Nutr. 2021, 60, 4393–4411. DOI: 10.1007/s00394-021-02570-8.
  • Trafford, K.; Fincher, G. B., Eds. Barley Grain Carbohydrates: Starch and Cell Walls; American Association of Cereal Chemists (AACC): St Paul, Minnesota, 2014.
  • Fox, G. P. Chemical Composition in Barley Grains and Malt Quality. In Genetics and Improvement of Barley Malt Quality; Zhang, G., Li, C., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 63–98.
  • Jamar, C.; Du Jardin, P.; Fauconnier, M.-L.  Cell Wall Polysaccharides Hydrolysis of Malting Barley (Hordeum vulgare L.): A Review. Biotechnol. Agron. Soc. Environ. 2011, 15, 301–313.
  • Jin, Y.-L.; Speers, R. A.; Paulson, A. T.; Stewart, R. J. Barley Beta-Glucans and Their Degradation during Malting and Brewing. Tech. Q. Master Brew. Assoc. Am. 2004, 41, 231–240.
  • Kubicek, C. P.; Starr, T. L.; Glass, N. L. 23_Plant Cell Wall–Degrading Enzymes and Their Secretion in Plant-Pathogenic Fungi. Ann. Rev. Phytopathol. 2014, 52, 427–451. DOI: 10.1146/annurev-phyto-102313-045831.
  • Reuveni, M.; Sheglov, N.; Eshel, D.; Prusky, D.; Ben-Arie, R. Virulence and the Production of Endo-1,4-ß-Glucanase by Isolates of Alternaria alternata Involved in the Moldy-Core Disease of Apples. J. Phytopathol. 2007, 155, 50–55. DOI: 10.1111/j.1439-0434.2006.01201.x.
  • Ma, H.; Zhang, B.; Gai, Y.; Sun, X.; Chung, K.-R.; Li, H. Cell-Wall-Degrading Enzymes Required for Virulence in the Host Selective Toxin-Producing Necrotroph Alternaria alternata of Citrus. Front. Microbiol. 2019, 10, 2514. DOI: 10.3389/fmicb.2019.02514.
  • Walton, J. D. Deconstructing the Cell Wall. Plant Physiol. 1994, 104, 1113–1118. DOI: 10.1104/pp.104.4.1113.
  • Aro, N.; Pakula, T.; Penttilä, M. Transcriptional Regulation of Plant Cell Wall Degradation by Filamentous Fungi. FEMS Microbiol. Rev. 2005, 29, 719–739. DOI: 10.1016/j.femsre.2004.11.006.
  • Martin, K.; McDougall, B. M.; McIlroy, S.; Chen, J.; Seviour, R. J. Biochemistry and Molecular Biology of Exocellular Fungal β-(1,3)- and β-(1,6)-Glucanases. FEMS Microbiol. Rev. 2007, 31, 168–192. DOI: 10.1111/j.1574-6976.2006.00055.x.
  • Mouyna, I.; Hartl, L.; Latgé, J.-P. β-1,3-Glucan Modifying Enzymes in Aspergillus fumigatus. Front. Microbiol. 2013, 4, 81. DOI: 10.3389/fmicb.2013.00081.
  • Pitson, S. M.; Seviour, R. J.; McDougall, B. M. Noncellulolytic Fungal β-Glucanases: Their Physiology and Regulation. Enzyme Microbial Technol. 1993, 15, 178–192. DOI: 10.1016/0141-0229(93)90136-P.
  • Garcia-Rubio, R.; Oliveira, H. C. de; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2019, 10, 2993. DOI: 10.3389/fmicb.2019.02993.
  • Robl, D.; da Silva, P.; Mergel, C.; M.; Rojas, J., D. The Capability of Endophytic Fungi for Production of Hemicellulases and Related Enzymes. BMC Biotechnol. 2013, 13, 94. DOI: 10.1186/1472-6750-13-94.
  • Kaur, M.; Aggarwal, N. K. Enzymatic Activities of Pathogenic Species of Alternaria, Isolated from Parthenium. Ind. Jour. Weed Sci. 2017, 49, 207–210. DOI: 10.5958/0974-8164.2017.00055.7.
  • Faten, A. M.; El Aty Abeer, A. A. Enzyme Activities of the Marine-Derived Fungus Alternaria alternata Cultivated on Selected Agricultural Wastes. J. Appl. Biol. Sci. 2013, 7, 39–46.
  • El-Said, A.; Saleem, A.; Maghraby, T. A.; Hussein, M. A. Cellulase Activity of Some Phytopathogenic Fungi Isolated from Diseased Leaves of Broad Bean. Arch. Phytopathol. Plant Prot. 2014, 47, 2078–2094. DOI: 10.1080/03235408.2013.868698.
  • Sáenz-de-Santamaría, M.; Guisantes, J. A.; Martínez, J. Enzymatic Activities of Alternaria alternata Allergenic Extracts and Its Major Allergen (Alt a 1). Mycoses. 2006, 49, 288–292. DOI: 10.1111/j.1439-0507.2006.01238.x.
  • Żukiewicz-Sobczak, W. A.; Cholewa, G.; Sobczak, P.; Silny, W.; Nadulski, R.; Wojtyła-Buciora, P.; Zagórski, J. Enzymatic Activity of Fungi Isolated from Crops. Postepy dermatologii i alergologii. 2016, 33, 457–463. DOI: 10.5114/ada.2016.63885.
  • Martínez, M. J.; Vázquez, C.; Guillén, F.; Reyes, F. β-Glucosidase from the Cellulolytic System of Alternaria alternata Autolyzed Cultures. FEMS Microbiol. Lett. 1988, 55, 263–267. DOI: 10.1016/0378-1097(88)90035-3.
  • Eshel, D.; Lichter, A.; Dinoor, A.; Prusky, D. Characterization of Alternaria alternata Glucanase Genes Expressed during Infection of Resistant and Susceptible Persimmon Fruits. Mol. Plant Pathol. 2002, 3, 347–358. DOI: 10.1046/j.1364-3703.2002.00127.x.
  • Vries, R. P. de; Visser, J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001, 65, 497–522. DOI: 10.1128/MMBR.65.4.497-522.2001.
  • Baraldo Junior, A.; Borges, D. G.; Tardioli, P. W.; Farinas, C. S. Characterization of β-Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose. Biotechnol. Res. Int. 2014, 2014, 317092. DOI: 10.1155/2014/317092.
  • Izidoro, S. C.; Knob, A. Production of Xylanases by an Aspergillus niger Strain in Wastes Grain. Acta Sci. Biol. Sci. 2014, 36, 313. DOI: 10.4025/actascibiolsci.v36i3.20567.
  • Chávez, R.; Bull, P.; Eyzaguirre, J. The Xylanolytic Enzyme System from the Genus Penicillium. J. Biotechnol. 2006, 123, 413–433. DOI: 10.1016/j.jbiotec.2005.12.036.
  • Abe, C. A. L.; Faria, C. B.; Castro, F. F. de; Souza, S. R. de; dos Santos, F. C.; da Silva, C. N.; Tessmann, D. J.; Barbosa-Tessmann, I. P. Fungi Isolated from Maize (Zea mays L.) Grains and Production of Associated Enzyme Activities. Int. J. Mol. Sci. 2015, 16, 15328–15346. DOI: 10.3390/ijms160715328.
  • Araújo, J. A. de; Ferreira, N. R.; da Silva, S. H. M.; Oliveira, G.; Monteiro, R. C.; Alves, Y. F. M.; Lopes, A. S. Filamentous Fungi Diversity in the Natural Fermentation of Amazonian cocoa Beans and the Microbial Enzyme Activities. Ann. Microbiol. 2019, 69, 975–987. DOI: 10.1007/s13213-019-01488-1.
  • Mushimiyimana, I.; Umuhozariho, M. G.; Maniraho, L. A Statistical Strategy for the Production of Cellulase, Xylanase and a-Amylase by Cladosporium cladosporioides. Fungal Territory. 2019, 2, 16–21. DOI: 10.36547/ft.2019.2.2.16-21.
  • Hong, J.-Y.; Kim, Y.-H.; Jung, M.-H.; Jo, C.-W.; Choi, J.-E. Characterization of Xylanase of Cladosporium cladosporioides H1 Isolated from Janggyeong Panjeon in Haeinsa Temple. Mycobiology. 2011, 39, 306–309. DOI: 10.5941/MYCO.2011.39.4.306.
  • El-Said, A. H. M. Phyllosphere and Phylloplane Fungi of Banana Cultivated in Upper Egypt and their Cellulolytic Ability. Mycobiology. 2001, 29, 210–217. DOI: 10.1080/12298093.2001.12015790.
  • Oh, K. B.; Hamada, K.; Saito, M.; Lee, H. J.; Matsuoka, H. Isolation and Properties of an Extracellular β-Glucosidase from a Filamentous Fungus, Cladosporium resinae, Isolated from Kerosene. Biosci. Biotechnol. Biochem. 1999, 63, 281–287. DOI: 10.1271/bbb.63.281.
  • Kamal, L.; Mathur, S. N. Cellulolytic Activities of Chaetomium globosum on Different Cellulosic Substrates. World J. Microbiol. Biotechnol. 1990, 6, 23–26. DOI: 10.1007/BF01225350.
  • Peltonen, S. Comparison of Xylanase Production by Fungal Pathogens of Barley with Special Reference to Bipolaris sorokiniana. Mycol. Res. 1995, 99, 717–723. DOI: 10.1016/S0953-7562(09)80535-2.
  • Moubasher, A. H.; Mazen, M. B. Assay of Cellulolytic Activity of Cellulose-Decomposing Fungi Isolated from Egyptian Soils. J. Basic Microbiol. 1991, 31, 59–68. DOI: 10.1002/jobm.3620310113.
  • Youatt, G. Fungal cellulases. IX. Growth of Stachybotrys atra on Cellulose and Production of a β-Glucosidease Hyrolysing Cellobiose. J. Biol. Chem. 1958, 11, 209–217. DOI: 10.1071/BI9580209.
  • Picart, P.; Goedegebuur, F.; Díaz, P.; Javier Pastor, F. I. Expression of Novel β-Glucanase Cel12A from Stachybotrys atra in Bacterial and Fungal Hosts. Fungal Biol. 2012, 116, 443–451. DOI: 10.1016/j.funbio.2012.01.004.
  • Celestino, K. R. S.; Cunha, R. B.; Felix, C. R. Characterization of a β-Glucanase Produced by Rhizopus microsporus var. Microsporus, and Its Potential for Application in the Brewing Industry. BMC Biochem. 2006, 7. DOI: 10.1186/1471-2091-7-23.
  • Noots, I.; Derycke, V.; Jensen, H. E.; Michiels, C.; Delcour, J. A.; Coppens, T. Studies on Barley Starchy Endosperm Cell Wall Degradation by Rhizopus VII. J. Cereal Sci. 2003, 37, 81–90. DOI: 10.1006/jcrs.2002.0482.
  • Geißinger, C.; Gastl, M.; Becker, T. Enzymes from Cereal and Fusarium Metabolism Involved in the Malting Process – A Review. J. Am. Soc. Brew. Chemists. 2022, 80, 1–16. DOI: 10.1080/03610470.2021.1911272.
  • Sultan, A.; Andersen, B.; Svensson, B.; Finnie, C. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains. J. Proteome Res. 2016, 15, 1151–1167. DOI: 10.1021/acs.jproteome.5b01042.
  • Laitila, A.; Kotaviita, E.; Peltola, P.; Home, S.; Wilhelmson, A. Indigenous Microbial Community of Barley Greatly Influences Grain Germination and Malt Quality. J. Inst. Brew. 2007, 113, 9–20. DOI: 10.1002/j.2050-0416.2007.tb00250.x.
  • Sadosky, P.; Schwarz, P. B.; Horsley, R. D. Effect of Arabinoxylans, β-Glucans, and Dextrins on the Viscosity and Membrane Filterability of a Beer Model Solution. J. Am. Soc. Brew. Chemists. 2002, 60, 153–162. DOI: 10.1094/ASBCJ-60-0153.
  • Gastl, M.; Kupetz, M.; Becker, T. Determination of Cytolytic Malt Modification – Part I: Influence of Variety Characteristics. J. Am. Soc. Brew. Chemists. 2021, 79, 53–65. DOI: 10.1080/03610470.2020.1796156.
  • Gastl, M.; Kupetz, M.; Becker, T. Determination of Cytolytic Malt Modification – Part II: Impact on Wort Separation. J. Am. Soc. Brew. Chemists. 2021, 79, 66–74. DOI: 10.1080/03610470.2020.1796155.
  • Oliveira, P.; Mauch, A.; Jacob, F.; Arendt, E. K. Impact of Fusarium culmorum-Infected Barley Malt Grains on Brewing and Beer Quality. J. Am. Soc. Brew. Chemists. 2012, 70, 186–194. DOI: 10.1094/ASBCJ-2012-0713-01.
  • Langstaff, S. A.; Lewis, M. J. The Mouthfeel of Beer – A Review. J. Inst. Brew. 1993, 99, 31–37. DOI: 10.1002/j.2050-0416.1993.tb01143.x.
  • Krebs, G.; Müller, M.; Becker, T.; Gastl, M. Characterization of the Macromolecular and Sensory Profile of Non-Alcoholic Beers Produced with Various Methods. Food Res. Int. 2019, 116, 508–517. DOI: 10.1016/j.foodres.2018.08.067.
  • Kaur, M.; Bowman, J. P.; Stewart, D. C.; Sheehy, M.; Janusz, A.; Speers, R. A.; Koutoulis, A.; Evans, D. E. TRFLP Analysis Reveals That Fungi Rather Than Bacteria Are Associated with Premature Yeast Flocculation in Brewing. J. Ind. Microbiol. Biotechnol. 2012, 39, 1821–1832. DOI: 10.1007/s10295-012-1188-8.
  • van Nierop, S. N. E.; Cameron-Clarke, A.; Axcell, B. C. Enzymatic Generation of Factors from Malt Responsible for Premature Yeast Flocculation. J. Am. Soc. Brew. Chemists. 2004, 62, 108–116. DOI: 10.1094/ASBCJ-62-0108.
  • Xie, Y.; Cai, G.; Xu, M.; Han, B.; Li, C.; Lu, J. The Effect of Barley Infected with Xylanase-Producing Filamentous Fungi on Premature Yeast Flocculation. J. Inst. Brew. 2022, 128, 162–170. DOI: 10.1002/jib.702.
  • Kunze, W. Technologie Brauer & Mälzer, 11th ed.; überarbeitete Auflage; VLB: Berlin, 2016.
  • Langenaeken, N. A.; Ieven, P.; Hedlund, E. G.; Kyomugasho, C.; van de Walle, D.; Dewettinck, K.; van Loey, A. M.; Roeffaers, M. B. J.; Courtin, C. M. Arabinoxylan, β-Glucan and Pectin in Barley and Malt Endosperm Cell Walls: A Microstructure Study Using CLSM and Cryo-SEM. Plant J. 2020, 103, 1477–1489. DOI: 10.1111/tpj.14816.
  • Xiong, Y.; Wu, V. W.; Lubbe, A.; Qin, L.; Deng, S.; Kennedy, M.; Bauer, D.; Singan, V. R.; Barry, K.; Northen, T. R. ; et al. A Fungal Transcription Factor Essential for Starch Degradation Affects Integration of Carbon and Nitrogen Metabolism. PLoS Genet. 2017, 13, e1006737. DOI: 10.1371/journal.pgen.1006737.
  • vanKuyk, P. A.; Benen, J. A. E.; Wösten, H. A. B.; Visser, J.; Vries, R. P. de. A Broader Role for AmyR in Aspergillus niger: Regulation of the Utilisation of D-Glucose or D-Galactose Containing Oligo- and Polysaccharides. Appl. Microbiol. Biotechnol. 2012, 93, 285–293. DOI: 10.1007/s00253-011-3550-6.
  • Osherov, N.; May, G. S. The Molecular Mechanisms of Conidial Germination. FEMS Microbiol. Lett. 2001, 199, 153–160. DOI: 10.1111/j.1574-6968.2001.tb10667.x.
  • Xu, K.-G.; Jiang, Y.-M.; Li, Y.-K.; Xu, Q.-Q.; Niu, J.-S.; Zhu, X.-X.; Li, Q.-Y. Identification and Pathogenicity of Fungal Pathogens Causing Black Point in Wheat on the North China Plain. Indian J. Microbiol. 2018, 58, 159–164. DOI: 10.1007/s12088-018-0709-1.
  • Nguyen, C. H.; Tsurumizu, R.; Sato, T.; Takeuchi, M. Taka-amylase A in the Conidia of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem. 2005, 69, 2035–2041. DOI: 10.1271/bbb.69.2035.
  • Muriithi, J.; Matofari, J. W.; Nduko, J. M. Amylolytic Microorganisms from Diverse Tropical Environments: Isolation, Identification, and Amylase Production. Appl. Res. 2021, e202100007. DOI: 10.1002/appl.202100007.
  • Aydogdu, H.; Balkan, B.; Balkan, S.; Ertan, F. Amylolytic Activities of Fungi Species on the Screening Medium Adjusted to Different pH. EÜFBED - Fen Bilimleri Enstitüsü Dergisi [Journal of the Graduate School of Natural and Applied Sciences], 2012, 5, 1–12.
  • Saleem, A.; Ebrahim, M. K. Production of Amylase by Fungi Isolated from Legume Seeds Collected in Almadinah Almunawwarah, Saudi Arabia. J. Taibah Univ. Sci. 2014, 8, 90–97. DOI: 10.1016/j.jtusci.2013.09.002.
  • Shafique, S.; Bajwa, R.; Shafique, S. Alpha-Amylase Production by Toxigenic Fungi. Nat. Product Res. 2010, 24, 1449–1456. DOI: 10.1080/14786410903132423.
  • Lateef, A.; Oloke, J. K.; Gueguim Kana, E. B.; Adebayo, I. Aspects of the Isolation and Characterization of Thermostabile Alpha-Amylase from Alternaria alternata. Global J. Pure Appl. Sci. 2004, 10, 75–79. DOI: 10.4314/gjpas.v10i1.16361.
  • Evans, E.; van Wegen, B.; Ma, Y.; Eglinton, J. The Impact of the Thermostability of α-Amylase, β-Amylase, and Limit Dextrinase on Potential Wort Fermentability. J. Am. Soc. Brew. Chemists. 2003, 61, 210–218. DOI: 10.1094/ASBCJ-61-0210.
  • Nayab, D.; Akhtar, S.; Bangash, N.; Nisa, W.; Hayat, M. T.; Zulfiqar, A.; Niaz, M.; Qayyum, A.; Syed, A.; Bahkali, A. H.; et al. Production of Glucoamylase from Novel Strain of Alternaria Alternata under Solid State Fermentation. BioMed Res. Int. 2022, 2022, 2943790. DOI: 10.1155/2022/2943790.
  • Parbery, D. G. The Natural Occurrence of Cladosporium resinae. Trans. Br. mycol. Soc. 1969, 53, 15–23. DOI: 10.1016/S0007-1536(69)80002-1.
  • Tomasik, P.; Horton, D. Enzymatic Conversions of Starch. Adv. Carbohydrate Chem. Biochem., 2012, 68, 59–436. DOI: 10.1016/B978-0-12-396523-3.00001-4.
  • Marshall, J. J.; Fla, M. Starch-Degrading Enzymes Derived from Cladosporium resinae: US Patent, 1978 (Patent US4211842A)
  • Marshall, J. J.; Fla, M. Starch-Degrading Enzymes Derived from Cladosporium resinae: US Patent, 1979 (Patent US4234686A)
  • McCleary, B. V.; Anderson, M. A. Hydrolysis of α-d-Glucans and α-d-Gluco-Oligosaccharides by Cladosporium resinae Glucoamylases. Carbohydrate Res. 1980, 86, 77–96. DOI: 10.1016/S0008-6215(00)84583-8.
  • Tada, S.; Iimura, Y.; Gomi, K.; Takahashi, K.; Hara, S.; Yoshizawa, K. Cloning and Nucleotide Sequence of the Genomic Taka-Amylase A Gene of Aspergillus oryzae. Agric. Biol. Chem. 1989, 53, 593–599. DOI: 10.1080/00021369.1989.10869378.
  • Gomi, K. Regulatory Mechanisms for Amylolytic Gene Expression in the Koji Mold Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2019, 83, 1385–1401. DOI: 10.1080/09168451.2019.1625265.
  • Sahnoun, M.; Bejar, S.; Sayari, A.; Triki, M. A.; Kriaa, M.; Kammoun, R. Production, Purification and Characterization of Two α-Amylase Isoforms from a Newly Isolated Aspergillus oryzae Strain S2. Process Biochem. 2012, 47, 18–25. DOI: 10.1016/j.procbio.2011.09.016.
  • Hata, Y.; Ishida, H.; Kojima, Y.; Ichikawa, E.; Kawato, A.; Suginami, K.; Imayasu, S. Comparison of Two Glucoamylases Produced by Aspergillus oryzae in Solid-State Culture (Koji) and in Submerged Culture. J. Ferment. Bioeng. 1997, 84, 532–537. DOI: 10.1016/S0922-338X(97)81907-1.
  • Woloshuk, C. P.; Cavaletto, J. R.; Cleveland, T. E. Inducers of Aflatoxin Biosynthesis from Colonized Maize Kernels Are Generated by an Amylase Activity from Aspergillus flavus. Phytopathology. 1997, 87, 164–169. DOI: 10.1094/PHYTO.1997.87.2.164.
  • Fakhoury, A. M.; Woloshuk, C. P. Amy1, the Alpha-Amylase Gene of Aspergillus flavus: Involvement in Aflatoxin Biosynthesis in Maize Kernels. Phytopathology. 1999, 89, 908–914. DOI: 10.1094/PHYTO.1999.89.10.908.
  • Minoda, Y.; Koyano, T.; Arai, M.; Yamada, K. Acid-Stable α-Amylase of Black Aspergilli. Agric. Biol. Chem. 1968, 32, 104–113. DOI: 10.1080/00021369.1968.10859015.
  • Minoda, Y.; Yamada, K. Acid-Stable α-Amylase of Black Aspergilli. Agric. Biol. Chem. 1963, 27, 806–811. DOI: 10.1080/00021369.1963.10858184.
  • Mikami, S.; Iwano, K.; Shiinoki, S.; Shimada, T. Purification and Some Properties of Acid-stable α-Amylases from Shochu koji (Aspergillus kawachii). Agric. Biol. Chem. 1987, 51, 2495–2501. DOI: 10.1080/00021369.1987.10868400.
  • Arai, M.; Koyano, T.; Ozawa, H.; Minoda, Y.; Yamada, K. Acid-Stable α-Amylase of Black Aspergilli. Agric. Biol. Chem. 1968, 32, 507–513. DOI: 10.1080/00021369.1968.10859078.
  • Svensson, B.; Pedersen, T. G.; Svendsen, I.; Sakai, T.; Ottesen, M. Characterization of Two Forms of Glucoamylase from Aspergillus niger. Carlsberg Res. Commun. 1982, 47, 55–69. DOI: 10.1007/BF02907797.
  • Boel, E.; Hansen, M. T.; Hjort, I.; Høegh, I.; Fiil, N. P. Two Different Types of Intervening Sequences in the Glucoamylase Gene from Aspergillus niger. EMBO J. 1984, 3, 1581–1585. DOI: 10.1002/j.1460-2075.1984.tb02014.x.
  • Ünal, A.; Subaşı, A. S.; Malkoç, S.; Ocak, İ.; Korcan, S. E.; Yetilmezer, E.; Yurdugül, S.; Yaman, H.; Şanal, T.; Keçeli, A. Potential of Fungal Thermostable Alpha Amylase Enzyme Isolated from Hot Springs of Central Anatolia (Turkey) in Wheat Bread Quality. Food Biosci. 2022, 45, 101492. DOI: 10.1016/j.fbio.2021.101492.
  • Higuchi, Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J. Fungi, 2021, 7, 534. DOI: 10.3390/jof7070534.
  • Tonomura, K.; Futai, F.; Tanabe, O. Binding of a-Amylase to the Cell Wall of Aspergillus oryzae. Biochimica et Biophysica Acta. 1963, 78, 802–805. DOI: 10.1016/0006-3002(63)91068-0.
  • Masai, K.; Maruyama, J.; Nakajima, H.; Kitamoto, K. In Vivo Visualization of the Distribution of a Secretory Protein in Aspergillus oryzae Hyphae Using the RntA-EGFP Fusion Protein. Biosci. Biotechnol. Biochem. 2003, 67, 455–459. DOI: 10.1271/bbb.67.455.
  • Kimura, S.; Maruyama, J.; Watanabe, T.; Ito, Y.; Arioka, M.; Kitamoto, K. In Vivo Imaging of Endoplasmic Reticulum and Distribution of Mutant α-Amylase in Aspergillus oryzae. Fungal Genet. Biol. 2010, 47, 1044–1054. DOI: 10.1016/j.fgb.2010.09.003.
  • Hayakawa, Y.; Ishikawa, E.; Shoji, J.-Y.; Nakano, H.; Kitamoto, K. Septum-Directed Secretion in the Filamentous Fungus Aspergillus oryzae. Mol. Microbiol. 2011, 81, 40–55. DOI: 10.1111/j.1365-2958.2011.07700.x.
  • Zhu, L. Y.; Nguyen, C. H.; SATO, T.; Takeuchi, M. Analysis of Secreted Proteins during Conidial Germination of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem. 2004, 68, 2607–2612. DOI: 10.1271/bbb.68.2607.
  • Wang, Y.; Ral, J.-P.; Saulnier, L.; Kansou, K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods. 2022, 11, 1223. DOI: 10.3390/foods11091223.
  • Yu, W.-W.; Zhai, H.-L.; Xia, G.-B.; Tao, K.-Y.; Li, C.; Yang, X.-Q.; Li, L.-H. Starch Fine Molecular Structures as a Significant Controller of the Malting, Mashing, and Fermentation Performance during Beer Production. Trends Food Sci. Technol. 2020, 105, 296–307. DOI: 10.1016/j.tifs.2020.09.010.
  • Sujaka, M.; Jamroz, J. Starch Granule Porosity and Its Changes by Means of Amylolysis. Int. Agrophys. 2007, 21, 107–113.
  • Sun, Z.; Henson, C. A. Degradation of Native Starch Granules by Barley Alpha-Glucosidases. Plant Physiol. 1990, 94, 320–327. DOI: 10.1104/pp.94.1.320.
  • Slack, P. T.; Wainwright, T. Amylolysis of Large Barley Starch Grganules from Barleys in Relation to Their Gelantinisation Temperatures. J. Inst. Brew. 1980, 86, 74–77. DOI: 10.1002/j.2050-0416.1980.tb03961.x.
  • Quigley, T. A.; Kelly, C. T.; Doyle, E. M.; Fogarty, W. M. Patterns of Raw Starch Digestion by the Glucoamylase of Cladosporium gossypiicola ATCC 38026. Process Biochem. 1998, 33, 677–681. DOI: 10.1016/S0032-9592(98)00036-3.
  • Jamme, F.; Bourquin, D.; Tawil, G.; Viksø-Nielsen, A.; Buléon, A.; Réfrégiers, M. 3D Imaging of Enzymes Working In Situ. Analy. Chem. 2014, 86, 5265–5270. DOI: 10.1021/ac403699h.
  • Kimura, A.; Robyt, J. F. Reaction of Enzymes with Starch Granules: Kinetics and Products of the Reaction with Glucoamylase. Carbohydrate Res. 1995, 277, 87–107. DOI: 10.1016/0008-6215(95)00196-Z.
  • Oyedeji, O.; Olakusehin, V. O.; Okonji, R. E. A Thermostable Extracellular α-Amylase from Aspergillus flavus S2-OY: Purification, Characterisation and Application in Raw Starch Hydrolysis. Biocatal. Biotransform. 2021, 41, 174–186. DOI: 10.1080/10242422.2021.2005032.
  • Sun, H.; Ge, X.; Zhang, W. Production of a Novel Raw-Starch-Digesting Glucoamylase by Penicillium sp. X-1 under Solid State Fermentation and Its Use in Direct Hydrolysis of Raw Starch. World J. Microbiol. Biotechnol. 2007, 23, 603–613. DOI: 10.1007/s11274-006-9269-3.
  • Pozo-Insfran, D.; Urias-Lugo, D.; Hernandez-Brenes, C.; Saldivar, S. O. S. Effect of Amyloglucosidase on Wort Composition and Fermentable Carbohydrate Depletion in Sorghum Lager Beers. J. Inst. Brew. 2004, 110, 124–132. DOI: 10.1002/j.2050-0416.2004.tb00191.x.
  • Langenaeken, N. A.; Schepper, C. F. de; Schutter, D. P. de; Courtin, C. M. Different Gelatinization Characteristics of Small and Large Barley Starch Granules Impact Their Enzymatic Hydrolysis and Sugar Production during Mashing. Food Chem. 2019, 295, 138–146. DOI: 10.1016/j.foodchem.2019.05.045.
  • Schepper, C. F. de Courtin, C. M. High Mashing Thickness Negatively Influences Gelatinisation of Small and Large Starch Granules and Starch Conversion Efficiency during Barley Malt Brewing. Food Hydrocolloids. 2022, 131, 107745. DOI: 10.1016/j.foodhyd.2022.107745.
  • van Nierop, S. N. E.; Rautenbach, M. The Impact of Microorganisms on Barley and Malt Quality – A Review. J. Am. Soc. Brew. Chemists. 2006, 64, 69–78. DOI: 10.1094/ASBCJ-64-0069.
  • Rakete, S.; Klaus, A.; Glomb, M. A. Investigations on the Maillard Reaction of Dextrins during Aging of Pilsner TYPE BEER. J. Agric. Food Chem. 2014, 62, 9876–9884. DOI: 10.1021/jf503038c.
  • Nobis, A.; Kwasnicki, M.; Lehnhardt, F.; Hellwig, M.; Henle, T.; Becker, T.; Gastl, M. A Comprehensive Evaluation of Flavor Instability of Beer (Part 2): The Influence of De Novo Formation of Aging Aldehydes. Foods. 2021, 10, 2668. DOI: 10.3390/foods10112668.
  • Nielsen, L. K.; Cook, D. J.; Edwards, S. G.; Ray, R. V. The Prevalence and Impact of Fusarium Head Blight Pathogens and Mycotoxins on Malting Barley Quality in UK. Int. J. Food Microbiol. 2014, 179, 38–49. DOI: 10.1016/j.ijfoodmicro.2014.03.023.
  • Rübsam, H.; Gastl, M.; Becker, T. Influence of the Range of Molecular Weight Distribution of Beer Components on the Intensity of Palate Fullness. Eur. Food Res. Technol. 2013, 236, 65–75. DOI: 10.1007/s00217-012-1861-1.
  • Steiner, E.; Gastl, M.; Becker, T. Protein Changes during Malting and Brewing with Focus on Haze and Foam Formation: A Review. Eur. Food Res. Technol. 2011, 232, 191–204. DOI: 10.1007/s00217-010-1412-6.
  • Aldred, P.; Kanauchi, M.; Bamforth, C. W. An Investigation into Proteolysis in Mashing. J. Inst. Brew. 2021, 127, 21–26. DOI: 10.1002/jib.635.
  • Briggs, D. E. Malts and Malting, 1st ed.; Springer-Verlag US: New York, 1998.
  • Osborne, T. The Vegetable Proteins, 2nd ed.; Longmans Green and Co: London, 1924.
  • Arendt, E. K.; Zannini, E. B. Cereal Grains for the Food and Beverage Industries; Woodhead Publishing, Cambridge, UK, 2013; pp 155–201e.
  • Jones, B. L. Endoproteases of Barley and Malt. J. Cereal Sci. 2005, 42, 139–156. DOI: 10.1016/j.jcs.2005.03.007.
  • Dunn, B. M., Ed. Peptide Chemistry and Drug Design; Wiley: Hoboken, New Jersey, 2015.
  • Muszewska, A.; Stepniewska-Dziubinska, M. M.; Steczkiewicz, K.; Pawlowska, J.; Dziedzic, A.; Ginalski, K. Fungal Lifestyle Reflected in Serine Protease Repertoire. Sci. Rep. 2017, 7, 9147. DOI: 10.1038/s41598-017-09644-w.
  • Hedstrom, L. Serine Protease Mechanism and Specificity. Chem. Rev. 2002, 102, 4501–4524. DOI: 10.1021/cr000033x.
  • Valueva, T. A.; Kudryavtseva, N. N.; Sofyin, A. V.; Zaitchik, B. T.; Pobedinskaya, M. A.; Kokaeva, L. Y.; Elansky, S. N. Serine Exoproteinases Secreted by the Pathogenic Fungi of Alternaria Genus. J. Plant Pathol. Microbiol. 2015, 6, 272. DOI: 10.4172/2157-7471.1000272.
  • Valueva, T. A.; Kudryavtseva, N. N.; Gvozdeva, E. L.; Sof´in, A. V.; Il’ina, N. Y.; Pobedinskaya, M. A.; Elansky, S. N. Serine Proteinases Secreted by Two Isolates of Alternaria solani. J. Basic Appl. Sci. 2013, 9, 105–115.
  • Dunaevskii, Y. E.; Gruban, T. N.; Belyakova, G. A.; Belozerskii, M. A. Extracellular Proteinases of Filamentous Fungi as Potential Markers of Phytopathogenesis. Microbiology. 2006, 75, 649–652. DOI: 10.1134/S0026261706060051.
  • Dubovenko, A. G.; Dunaevsky, Y. E.; Belozersky, M. A.; Oppert, B.; Lord, J. C.; Elpidina, E. N. Trypsin-Like Proteins of the Fungi as Possible Markers of Pathogenicity. Fungal Biol. 2010, 114, 151–159. DOI: 10.1016/j.funbio.2009.11.004.
  • Zaferanloo, B.; Quang, T. D.; Daumoo, S.; Ghorbani, M. M.; Mahon, P. J.; Palombo, E. A. Optimization of Protease Production by Endophytic Fungus, Alternaria alternata, Isolated from an Australian Native Plant. World J. Microbiol. Biotechnol. 2014, 30, 1755–1762. DOI: 10.1007/s11274-014-1598-z.
  • More, S. M., Girde, A. V., Baig, M. M. V. In Vitro Protease Synthesis by Seed Borne Alternaria alternata (FR. Keissl). Biomed. Pharmacol. J. 2009, 2, 153–156.
  • Chandrasekaran, M.; Sathiyabama, M. Production, Partial Purification and Characterization of Protease from a Phytopathogenic Fungi Alternaria solani (Ell. and Mart.) Sorauer. J. Basic Microbiol. 2014, 54, 763–774. DOI: 10.1002/jobm.201200584.
  • Fu, H.; Chung, K.-R.; Liu, X.; Li, H. Aaprb1, A Subtilsin-Like Protease, Required for Autophagy and Virulence of the Tangerine Pathotype of Alternaria alternata. Microbiol. Res. 2020, 240, 126537. DOI: 10.1016/j.micres.2020.126537.
  • Kukreja, N.; Arora, N.; Singh, B. P.; Das, H. R.; Sridhara, S. Role of Glycoproteins Isolated from Epicoccum purpurascens in Host-Pathogen Interaction. Pathobiology J. Immunopathol. Mol. Cellular Biol. 2007, 74, 186–192. DOI: 10.1159/000103378.
  • Bisht, V.; Arora, N.; Singh, B. P.; Pasha, S.; Gaur, S. N.; Sridhara, S. Epi p 1, An Allergenic Glycoprotein of Epicoccum purpurascens Is a Serine Protease. FEMS Immunol. Med. Microbiol. 2004, 42, 205–211. DOI: 10.1016/j.femsim.2004.05.003.
  • Kukreja, N.; Sridhara, S.; Singh, B. P.; Arora, N. Effect of Proteolytic Activity of Epicoccum purpurascens Major Allergen, Epi p 1 in Allergic Inflammation. Clin. Exp. Immunol. 2008, 154, 162–171. DOI: 10.1111/j.1365-2249.2008.03762.x.
  • Chou, H.; Tam, M. F.; Lee, L.-H.; Chiang, C.-H.; Tai, H.-Y.; Panzani, R. C.; Shen, H.-D. Vacuolar Serine Protease Is a Major Allergen of Cladosporium cladosporioides. Int. Arch. Allergy Immunol. 2008, 146, 277–286. DOI: 10.1159/000121462.
  • Pöll, V.; Denk, U.; Shen, H.-D.; Panzani, R. C.; Dissertori, O.; Lackner, P.; Hemmer, W.; Mari, A.; Crameri, R.; Lottspeich, F.; et al. The Vacuolar Serine Protease, A Cross-Reactive Allergen from Cladosporium herbarum. Mol. Immunol. 2009, 46, 1360–1373. DOI: 10.1016/j.molimm.2008.11.017.
  • Jami, M.-S.; García-Estrada, C.; Barreiro, C.; Cuadrado, A.-A.; Salehi-Najafabadi, Z.; Martín, J.-F. The Penicillium chrysogenum Extracellular proteome. Conversion from a Food-Rotting Strain to a Versatile Cell Factory for White Biotechnology. Mol. Cellular Proteomics. 2010, 9, 2729–2744. DOI: 10.1074/mcp.M110.001412.
  • Shamraychuk, I. L.; Belyakova, G. A.; Eremina, I. M.; Kurakov, A. V.; Belozersky, M. A.; Dunaevsky, Y. E. Fungal Proteolytic Enzymes and Their Inhibitors as Perspective Biocides with Antifungal Action. Moscow Univ. Biol.Sci. Bull. 2020, 75, 97–103. DOI: 10.3103/S0096392520030086.
  • Taylor, J. P.; Jacob, F.; Zannini, E.; Arendt, E. K. Reduction of Hordein Content in Beer by Applying Prolyl Endoprotease to the Malting Process. J. Am. Soc. Brew. Chemists. 2017, 75, 262–268. DOI: 10.1094/ASBCJ-2017-3072-01.
  • Stepniak, D.; Spaenij-Dekking, L.; Mitea, C.; Moester, M.; Ru, A. de; Baak-Pablo, R.; van Veelen, P.; Edens, L.; Koning, F. Highly Efficient Gluten Degradation with a Newly Identified Prolyl Endoprotease: Implications for Celiac Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G621—G629. DOI: 10.1152/ajpgi.00034.2006.
  • Heredia-Olea, E.; Cortés-Ceballos, E.; Serna-Saldívar, S. O. Malting Sorghum with Aspergillus Oryzae Enhances Gluten-Free Wort Yield and Extract. J. Am. Soc. Brew. Chemists. 2017, 75, 116–121. DOI: 10.1094/ASBCJ-2017-2481-01.
  • Ishida, K.; Kuboshima, M.; Morita, H.; Maeda, H.; Okamoto, A.; Takeuchi, M.; Yamagata, Y. Diversity in mRNA Expression of the Serine-Type Carboxypeptidase ocpG in Aspergillus oryzae through Intron Retention. Biosci. Biotechnol. Biochem. 2014, 78, 1328–1336. DOI: 10.1080/09168451.2014.923291.
  • Maeda, H.; Sakai, D.; Kobayashi, T.; Morita, H.; Okamoto, A.; Takeuchi, M.; Kusumoto, K.-I.; Amano, H.; Ishida, H.; Yamagata, Y. Three Extracellular Dipeptidyl Peptidases found in Aspergillus oryzae Show Varying Substrate Specificities. Appl. Microbiol. Biotechnol. 2016, 100, 4947–4958. DOI: 10.1007/s00253-016-7339-5.
  • Chen, Z.-Y.; Brown, R. L.; Cary, J. W.; Damann, K. E.; Cleveland, T. E. Characterization of an Aspergillus flavus Alkaline Protease and Its Role in the Infection of Maize Kernels. Toxin Rev. 2009, 28, 187–197. DOI: 10.1080/15569540903089221.
  • Feng, X. M.; Olsson, J.; Swanberg, M.; Schnürer, J.; Rönnow, D. Image Analysis for Monitoring the Barley Tempeh Fermentation Process. J. Appl. Microbiol. 2007, 103, 1113–1121. DOI: 10.1111/j.1365-2672.2007.03341.x.
  • Ahnan-Winarno, A. D.; Cordeiro, L.; Winarno, F. G.; Gibbons, J.; Xiao, H. Tempeh: A Semicentennial Review on Its Health Benefits, Fermentation, Safety, Processing, Sustainability, and Affordability. Comprehen. Rev. Food Sci. Food Saf. 2021, 20, 1717–1767. DOI: 10.1111/1541-4337.12710.
  • Heskamp, M.-L.; Barz, W. Expression of Proteases by Rhizopus species during Tempeh Fermentation of Soybeans. Nahrung. 1998, 42, 23–28. DOI: 10.1002/(SICI)1521-3803(199802)42:01 < 23:AID-FOOD23 > 3.0.CO;2-3.
  • Kumar, S.; Sharma, N. S.; Saharan, M. R.; Singh, R. Extracellular Acid Protease from Rhizopus oryzae: Purification and Characterization. Process Biochem. 2005, 40, 1701–1705. DOI: 10.1016/j.procbio.2004.06.047.
  • Banerjee, R.; Bhattacharyya, B. C. Purification and Characterization of Protease from a Newly Isolated Rhizopus oryzae. Bioprocess. Biosyst. Eng. 1992, 7, 369–374. DOI: 10.1007/BF00369493.
  • Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Protein Modifications and Metabolic Changes Taking Place during the Malting of Common Wheat (Triticum aestivum L.). J. Am. Soc. Brew. Chemists. 2013, 71, 153–160. DOI: 10.1094/ASBCJ-2013-0613-01.
  • Wolf-Hall, C. E. Mold and Mycotoxin Problems Encountered during Malting and Brewing. Int. J. Food Microbiol. 2007, 119, 89–94. DOI: 10.1016/j.ijfoodmicro.2007.07.030.
  • Da Silva, R. R. Commentary: Fungal Lifestyle Reflected in Serine Protease Repertoire. Front. Microbiol. 2018, 9, 467. DOI: 10.3389/fmicb.2018.00467.
  • Hill, A.; Stewart, G. Free Amino Nitrogen in Brewing. Fermentation. 2019, 5, 22. DOI: 10.3390/fermentation5010022.
  • Halayko, A. J.; Hill, R. D.; Svensson, B. Characterization of the Interaction of Barley α-Amylase II with an Endogenous α-Amylase Inhibitor from Barley Kernels. Biochimica et Biophysica Acta (BBA) – Protein Struct. Mol. Enzymol. 1986, 873, 92–101. DOI: 10.1016/0167-4838(86)90194-9.
  • Dominguez, F.; Cejudo, F. J. Patterns of Starchy Endosperm Acidification and Protease Gene Expression in Wheat Grains Following Germination. Plant Physiol. 1999, 119, 81–88. DOI: 10.1104/pp.119.1.81.
  • Noots, I.; Delcour, J. A.; Michiels, C. W. From Field Barley to Malt: Detection and Specification of Microbial Activity for Quality Aspects. Crit. Rev. Microbiol. 1998, 25, 121–153. DOI: 10.1080/10408419991299257.
  • Oliveira, P. M.; Waters, D. M.; Arendt, E. K. The Impact of Fusarium culmorum Infection on the Protein Fractions of Raw Barley and Malted Grains. Appl. Microbiol. Biotechnol. 2013, 97, 2053–2065. DOI: 10.1007/s00253-013-4696-1.
  • Nelofer, R. Nutritional Enhancement of Barley in Solid State Fermentation by Rhizopus oligosporus ML-10. NFSIJ. 2018, 6, 1–7. DOI: 10.19080/NFSIJ.2018.06.555700.
  • Wang, K.; Niu, M.; Song, D.; Liu, Y.; Wu, Y.; Zhao, J.; Li, S.; Lu, B. Evaluation of Biochemical and Antioxidant Dynamics during the Co-Fermentation of Dehusked Barley with Rhizopus oryzae and Lactobacillus plantarum. J. Food Biochem. 2020, 44, e13106. DOI: 10.1111/jfbc.13106.
  • Krogerus, K.; Gibson, B. R. 125th Anniversary Review: Diacetyl and Its Control during Brewery Fermentation. J Inst. Brew. 2013, 119, n/a–n/a. DOI: 10.1002/jib.84.
  • Krogerus, K.; Gibson, B. R. Influence of Valine and Other Amino Acids on Total Diacetyl and 2,3-Pentanedione Levels during Fermentation of Brewer's Wort. Appl. Microbiol. Biotechnol. 2013, 97, 6919–6930. DOI: 10.1007/s00253-013-4955-1.
  • Howe, S. Chapter 1 – Raw Materials. The Craft Brewing Handbook; Woodhead Publishing, Cambridge, UK, 2020; pp 1–46.
  • Okada, Y.; Iimure, T.; Takoi, K.; Kaneko, T.; Kihara, M.; Hayashi, K.; Ito, K.; Sato, K.; Takeda, K. The Influence of Barley Malt Protein Modification on Beer Foam Stability and Their Relationship to the Barley Dimeric Alpha-Amylase Inhibitor-I (BDAI-I) as a Possible Foam-Promoting Protein. J. Agric. Food Chem. 2008, 56, 1458–1464. DOI: 10.1021/jf0724926.
  • Shokribousjein, Z.; Deckers, S. M.; Gebruers, K.; Lorgouilloux, Y.; Baggerman, G.; Verachtert, H.; Delcour, J. A.; Etienne, P.; Rock, J.-M.; Michiels, C.; et al. Hydrophobins, Beer Foaming and Gushing. Cerevisia. 2011, 35, 85–101. DOI: 10.1016/j.cervis.2010.12.001.
  • Leisegang, R.; Stahl, U. Degradation of a Foam-Promoting Barley Protein by a Proteinase from Brewing Yeast. J. Inst. Brew. 2005, 111, 112–117. DOI: 10.1002/j.2050-0416.2005.tb00656.x.
  • Krebs, G.; Becker, T.; Gastl, M. Influence of Malt Modification and the Corresponding Macromolecular Profile on Palate Fullness in Cereal-Based Beverages. Eur. Food Res. Technol. 2020, 246, 1219–1229. DOI: 10.1007/s00217-020-03482-3.
  • Kato, M.; Kamada, T.; Mochizuki, M.; Sasaki, T.; Fukushima, Y.; Sugiyama, T.; Hiromasa, A.; Suda, T.; Imai, T. Influence of High Molecular Weight Polypeptides on the Mouthfeel of Commercial Beer. J. Inst. Brew. 2021, 127, 27–40. DOI: 10.1002/jib.630.
  • Linder, M. B.; Szilvay, G. R.; Nakari-Setälä, T.; Penttilä, M. E. Hydrophobins: The Protein-Amphiphiles of Filamentous Fungi. FEMS Microbiol. Rev. 2005, 29, 877–896. DOI: 10.1016/j.femsre.2005.01.004.
  • Linko, M.; Haikara, A.; Ritala, A.; Penttilä, M. Recent Advances in the Malting and Brewing Industry. J. Biotechnol. 1998, 65, 85–98. DOI: 10.1016/S0168-1656(98)00135-7.
  • Virkajärvi, V.; Sarlin, T.; Laitila, A. Fusarium Profiling and Barley Malt Gushing Propensity. J. Am. Soc. Brew. Chemists. 2017, 75, 181–192. DOI: 10.1094/ASBCJ-2017-3321-01.
  • Mastanjević, K.; Mastanjević, K.; Krstanović, V. The Gushing Experience—A Quick Overview. Beverages. 2017, 3, 25. DOI: 10.3390/beverages3020025.
  • Vogt, E. I.; Kupfer, V. M.; Vogel, R. F.; Niessen, L. Evidence of Gushing Induction by Penicillium oxalicum Proteins. J. Appl. Microbiol. 2017, 122, 708–718. DOI: 10.1111/jam.13366.
  • Garbe, L.A., Schwarz, P., Ehmer, A. Beer Gushing. In Beer: A Quality Perspective (Handbook of Alcoholic Beverages Series); Bamforth, C. W., Ed.; Academic Press: San Diego, 2009; pp 185.
  • Evans, D. E.; Bamforth, C. W. Beer Foam: Achieving a Suitable Head. In Beer: A Quality Perspective (Handbook of Alcoholic Beverages Series); Bamforth, C. W., Ed.; Academic Press: San Diego, 2009; pp 1–60.
  • Hou, S.; Jamieson, P.; He, P. The Cloak, Dagger, and Shield: Proteases in Plant-Pathogen Interactions. Biochem. J. 2018, 475, 2491–2509. DOI: 10.1042/BCJ20170781.
  • Jashni, M. K.; Dols, I. H. M.; Iida, Y.; Boeren, S.; Beenen, H. G.; Mehrabi, R.; Collemare, J.; Wit, P. J. G. M. de. Synergistic Action of a Metalloprotease and a Serine Protease from Fusarium oxysporum f. sp. lycopersici Cleaves Chitin-Binding Tomato Chitinases, Reduces Their Antifungal Activity, and Enhances Fungal Virulence. Mol. Plant-Microbe Interact. 2015, 28, 996–1008. DOI: 10.1094/MPMI-04-15-0074-R.
  • Slavokhotova, A. A.; Naumann, T. A.; Price, N. P. J.; Rogozhin, E. A.; Andreev, Y. A.; Vassilevski, A. A.; Odintsova, T. I. Novel Mode of Action of Plant Defense Peptides – Hevein-Like Antimicrobial Peptides from Wheat Inhibit Fungal Metalloproteases. FEBS J. 2014, 281, 4754–4764. DOI: 10.1111/febs.13015.