286
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Summer snowline altitude gradients in Western Norway are influenced by maritime climate

, , &
Received 15 Jan 2023, Accepted 17 Feb 2024, Published online: 08 Apr 2024

References

  • Ahlmann HWS. 1922. Glaciers in Jotunheim and their physiography. Geog Ann. 4(1):1–57. doi:10.1080/20014422.1922.11881048.
  • Amos CL, Martino S, Sutherland T, Al Rashidi T. 2015. Sea surface temperature trends in the coastal zone of British Columbia, Canada. J Coast Res. 300(2):434–446. doi:10.2112/JCOASTRES-D-14-00114.1.
  • Andersen T. 1982. Operational snow mapping by satellites. 4. Hydrological aspects of alpine and high mountain areas, Proceedings of the Exeter symposium; Jun 19-30; Exeter, UK.
  • Andreassen LM, Winsvold SH, Paul F, Hausberg JE. 2012. Inventory of Norwegian glaciers. Rapport. 38.
  • Babar B, Graversen R, Boström T. 2019. Solar radiation estimation at high latitudes: assessment of the CMSAF databases, ASR and ERA5. Sol Energy. 182:397–411. doi:10.1016/j.solener.2019.02.058.
  • Bandhauer M, Isotta F, Lakatos M, Lussana C, Båserud L, Izsák B, Szentes O, Tveito OE, Frei C. 2022. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int J Climatol. 42(2):727–747. doi:10.1002/joc.7269.
  • Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 438(7066):303–309. doi:10.1038/nature04141.
  • Barry RG, Andrews JT, Mahaffy MA. 1975. Continental ice sheets: conditions for growth. Science. 190(4218):979–981. doi:10.1126/science.190.4218.979.
  • Beniston M. 2012. Is snow in the Alps receding or disappearing? Wiley Inter Rev: Clim Chang. 3(4):349–358. doi:10.1002/wcc.179.
  • Brakenridge GR. 1978. Evidence for a cold, dry full-glacial climate in the American Southwest. Quat Res. 9(1):22–40. doi:10.1016/0033-5894(78)90080-7.
  • Buch LV. 1812. Uber die Grenze des ewigen Schnees in Norwegen. Gilberts Annaler.
  • Cherry J, Cullen H, Visbeck M, Small A, Uvo C. 2005. Impacts of the North Atlantic Oscillation on Scandinavian hydropower production and energy markets. Water Resour Manage. 19(6):673–691. doi:10.1007/s11269-005-3279-z.
  • Davison AC, Hinkley DV. 1997. Bootstrap methods and their application. Cambridge university press.
  • de Quervain A. 1903. Die Hebung der atmosphärischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. W. Engelmann.
  • Devasthale A, Carlund T, Karlsson K-G. 2022. Recent trends in the agrometeorological climate variables over Scandinavia. Agric For Meteorol. 316:108849. doi:10.1016/j.agrformet.2022.108849.
  • Dixit A, Goswami A, Jain S. 2019. Development and evaluation of a new “Snow Water Index (SWI)” for accurate snow cover delineation. Remote Sens (Basel). 11(23):2774. doi:10.3390/rs11232774.
  • Doesken NJ, Judson A. 2000. The snow booklet: a guide to the science, climatology, and measurement of snow in the United States. Fort Collins: Colorado State University.
  • Dozier J, Painter TH. 2004. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu Rev Earth Planet Sci. 32(1):465–494. doi:10.1146/annurev.earth.32.101802.120404.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36. doi:10.1016/j.rse.2011.11.026.
  • Dyrrdal AV, Saloranta T, Skaugen T, Stranden HB. 2013. Changes in snow depth in Norway during the period 1961–2010. Hydrology Research. 44(1):169–179. doi:10.2166/nh.2012.064.
  • Dyrrdal AV, Vikhamar-Schuler D. 2009. Analysis of long-term snow series at selected stations in Norway. Met no Report 05/2009 Climate.
  • Edwards AC, Scalenghe R, Freppaz M. 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quat Int. 162-163:172–181. doi:10.1016/j.quaint.2006.10.027.
  • EORC, JAXA. 2017. ALOS Global Digital Surface Model (DSM) “ALOS World 3D-30m” (AW3D30) Dataset.
  • Forbes JD. 1853. Norway and its glaciers: visited in 1851; followed by journals of excursions in the high Alps of Dauphiné, Berne and Savoy. A. and C. Black.
  • Fujisada H. 1995. Design and performance of ASTER instrument. Advanced and Next-Generation Satellites; Dec 1; Paris, France.
  • Gao B-C. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266. doi:10.1016/S0034-4257(96)00067-3.
  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 2014. 21st century climate change in the European Alps—a review. Sci Total Environ. 493:1138–1151. doi:10.1016/j.scitotenv.2013.07.050.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27. doi:10.1016/j.rse.2017.06.031.
  • Hall DK, Riggs GA, DiGirolamo NE, Román MO. 2019. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hyd Earth Sys Sci. 23(12):5227–5241. doi:10.5194/hess-23-5227-2019.
  • Hall DK, Riggs GA, Salomonson VV. 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ. 54(2):127–140. doi:10.1016/0034-4257(95)00137-P.
  • Hansen AM. 1902. Snegraensen i Norge. Det norske Geogr Selskaps Aarbok XIII, I901-02. Kristiania.
  • Hanssen-Bauer I. 2005. Regional temperature and precipitation series for Norway: analysis of time-series updated to 2004. Oslo.: Norwegian Meteorological Institute.
  • Hanssen-Bauer I, Drange H, Førland EJ, Roald LA, Børsheim KY, Hisdal H, Lawrence D, Nesje A, Sandven S, Sorteberg A, et al. 2009. Klima i Norge 2100. Bakgrunnsmateriale til NOU Klimatilplassing. Oslo, Norway: Norsk klimasenter.
  • Hanssen-Bauer I, Førland EJ, Haddeland I, Hisdal H, Mayer S, Nesje A, Nilsen JEØ, Sandven S, Sandø AB, Sorteberg A, et al. 2015. Klima i Norge 2100 Bakgrunnsmateriale til NOU Klimatilpassing. Oslo, Norway: Norsk klimasenter.
  • Hanssen-Bauer I, Førland EJ, Haugen JE, Tveito OE. 2003. Temperature and precipitation scenarios for Norway: comparison of results from dynamical and empirical downscaling. Clim Res. 25(1):15–27. doi:10.3354/cr025015.
  • Hantel M, Maurer C, Mayer D. 2012. The snowline climate of the Alps 1961–2010. Theor Appl Climatol. 110(4):517–537. doi:10.1007/s00704-012-0688-9.
  • Haralick RM, Shanmugam K, Dinstein IH. 1973. Textural features for image classification. IEEE Trans Syst, Man, Cyber. 6:610–621. doi:10.1109/TSMC.1973.4309314.
  • Heiskanen J, Kajuutti K, Jackson M, Elvehøy H, Pellikka P. 2002. Assessment of glaciological parameters using landsat satellite data in svartisen, northern norway. Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space; Mar 11-13; Bern, Switzerland.
  • Hu Z. 2020. Earth observation for the assessment of long-term snow dynamics in european mountains-analysing 35-year snowline dynamics in Europe based on high resolution earth observation data between 1984 and 2018. Universität Würzburg.
  • Hu Z, Dietz A, Kuenzer C. 2019a. The potential of retrieving snow line dynamics from Landsat during the end of the ablation seasons between 1982 and 2017 in European mountains. Int J Appl Earth Obs Geoinf. 78:138–148. doi:10.1016/j.jag.2019.01.010.
  • Hu Z, Dietz A, Zhao A, Uereyen S, Zhang H, Wang M, Mederer P, Kuenzer C. 2020. Snow moving to higher elevations: analyzing three decades of snowline dynamics in the alps. Geophys Res Lett. 47(12):e2019GL085742. doi:10.1029/2019GL085742.
  • Hu Z, Dietz AJ, Kuenzer C. 2019b. Deriving regional snow line dynamics during the ablation seasons 1984–2018 in European Mountains. Remote Sens (Basel). 11(8):933. doi:10.3390/rs11080933.
  • Hu Z, Kuenzer C, Dietz AJ, Dech S. 2017. The potential of earth observation for the analysis of cold region land surface dynamics in Europe—a review. Remote Sens (Basel). 9(10):1067. doi:10.3390/rs9101067.
  • Karlson M, Bastviken D, Reese H. 2021. Error characteristics of pan-arctic digital elevation models and elevation derivatives in Northern Sweden. Remote Sens (Basel). 13(22):4653. doi:10.3390/rs13224653.
  • Kauth RJ, Thomas G. 1976. The tasselled cap–a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proceedings of the 2nd Annual Symposium on Machine Processing of Remotely sensed data; Jun 29-Jul 1; Purdue University (IN), USA.
  • Keenan T, Riley W. 2018. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat Clim Change. 8(9):825–828. doi:10.1038/s41558-018-0258-y.
  • Keller JD, Wahl S. 2021. Representation of climate in reanalyses: an intercomparison for Europe and North America. J Clim. 34(5):1667–1684. doi:10.1175/JCLI-D-20-0609.1.
  • Ketzler G, Römer W, Beylich AA. 2021. The climate of Norway. Cham: Springer International Publishing; p. 7–29.
  • Kleindienst H, Wunderle S, Voigt S. 2000. Snow line analysis in the Swiss Alps based on NOAA-AVHRR Satellite data. Proceedings of EARSeL-SIG-Workshop Land Ice and Snow; Jun 16-17; Dresden, Germany.
  • König M, Winther JG, Isaksson E. 2001. Measuring snow and glacier ice properties from satellite. Rev Geophys. 39(1):1–27. doi:10.1029/1999RG000076.
  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006. World map of the Köppen-Geiger climate classification updated.
  • Krajčí P, Holko L, Perdigão RA, Parajka J. 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J Hydrol. 519:1769–1778. doi:10.1016/j.jhydrol.2014.08.064.
  • Krasting JP, Broccoli AJ, Dixon KW, Lanzante JR. 2013. Future changes in Northern Hemisphere snowfall. J Clim. 26(20):7813–7828. doi:10.1175/JCLI-D-12-00832.1.
  • Malardel S, Wedi N, Deconinck W, Diamantakis M, Kuehnlein C, Mozdzynski G, Hamrud M. 2015. A new grid for the IFS, ECMWF. Reading.
  • Marshall SJ, Miller K. 2020. Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains. The Cryosphere. 14(10):3249–3267. doi:10.5194/tc-14-3249-2020.
  • Marty C, Tilg A-M, Jonas T. 2017. Recent evidence of large-scale receding snow water equivalents in the European Alps. J Hydrometeor. 18(4):1021–1031. doi:10.1175/JHM-D-16-0188.1.
  • Marzeion B, Nesje A. 2012. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers. The Cryosphere. 6(3):661–673. doi:10.5194/tc-6-661-2012.
  • Meier MF, Post A. 1962. Recent variations in mass net budgets of glaciers in western North America. IASH Publ. 58:63–77.
  • Mengel J, Short D, North G. 1988. Seasonal snowline instability in an energy balance model. Clim Dyn. 2(3):127–131. doi:10.1007/BF01053470.
  • Messerli B, Viviroli D, Weingartner R. 2004. Mountains of the world: vulnerable water towers for the 21st century. AMBIO: J Hum Environ. 33:29–34. doi:10.1007/0044-7447-33.sp13.29.
  • Meyers SR. 2014. Astrochron: an R Package for Astrochronology. [accessed 2022 May 3]. https://cran.r-project.org/package = astrochron.
  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H. 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data. 13(9):4349–4383. doi:10.5194/essd-13-4349-2021.
  • Nesje A, Lie Ø, Dahl SO. 2000. Is the North Atlantic oscillation reflected in Scandinavian glacier mass balance records? J Quater Sci: Published for the Quaternary Research Association. 15(6):587–601.
  • NVE, MET.no, Kartverket. 2022. seNorge. [accessed 2022 March 5]. http://www.senorge.no/.
  • Østrem G. 1973. The transient snowline and glacier mass balance in southern British Columbia and Alberta, Canada. Geogr Ann: A, Phys Geogr. 55(2):93–106. doi:10.1080/04353676.1973.11879883.
  • Østrem G. 1974. Present alpine ice cover. Arctic Alp Environ. 6:225–250.
  • Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J. 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ. 113(4):868–879. doi:10.1016/j.rse.2009.01.001.
  • Painter TH, Roberts DA, Green RO, Dozier J. 1998. The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sens Environ. 65(3):320–332. doi:10.1016/S0034-4257(98)00041-8.
  • Parajka J, Pepe M, Rampini A, Rossi S, Blöschl G. 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J Hydrol. 381(3-4):203–212. doi:10.1016/j.jhydrol.2009.11.042.
  • Parding K, Olseth JA, Dagestad KF, Liepert BG. 2014. Decadal variability of clouds, solar radiation and temperature at a high-latitude coastal site in Norway. Tellus B: Chem Phys Meteor. 66(1):25897. doi:10.3402/tellusb.v66.25897.
  • Parding K, Olseth JA, Liepert BG, Dagestad K-F. 2016. Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway. Theor Appl Climatol. 125(3):625–639. doi:10.1007/s00704-015-1517-8.
  • Paschinger V. 1912. Die Schneegrenze in verschiedenen Klimaten. Petermanns Geogr Mitteilungen Erganzungsheft I73.
  • Pekel J-F, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature. 540(7633):418–422. doi:10.1038/nature20584.
  • Pelosi A, Terribile F, D’Urso G, Chirico GB. 2020. Comparison of ERA5-Land and UERRA MESCAN-SURFEX reanalysis data with spatially interpolated weather observations for the regional assessment of reference evapotranspiration. Water (Basel). 12(6):1669. doi:10.3390/w12061669.
  • Racoviteanu AE, Arnaud Y, Williams MW, Ordoñez J. 2008. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol. 54(186):499–510. doi:10.3189/002214308785836922.
  • Räisänen J. 2021. Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change. The Cryosphere. 15(4):1677–1696. doi:10.5194/tc-15-1677-2021.
  • Rasul G, Pasakhala B, Mishra A, Pant S. 2020. Adaptation to mountain cryosphere change: issues and challenges. Climate and Development. 12(4):297–309. doi:10.1080/17565529.2019.1617099.
  • Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y. 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob Planet Change. 56(1-2):101–110. doi:10.1016/j.gloplacha.2006.07.018.
  • Rengarajan R, Choate M, Storey J, Franks S, Micijevic E. 2020. Landsat Collection-2 geometric calibration updates. Earth Observing Systems XXV; Sep 17; Washington (DC), USA.
  • Richter E. 1896. Gletscher Norwegens. Geogr Zeitschrift. Bd II.
  • Riggs GA, Hall DK. 2020. Continuity of MODIS and VIIRS snow cover extent data products for development of an Earth science data record. Remote Sens (Basel). 12(22):3781. doi:10.3390/rs12223781.
  • Ripley ACaB. 2021. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28s. [accessed 2022 May 3]. https://cran.r-project.org/web/packages/boot/boot.pdf.
  • Rosenthal W, Dozier J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour Res. 32(1):115–130. doi:10.1029/95WR02718.
  • Sandvik MI, Sorteberg A, Rasmussen R. 2018. Sensitivity of historical orographically enhanced extreme precipitation events to idealized temperature perturbations. Clim Dyn. 50(1):143–157. doi:10.1007/s00382-017-3593-1.
  • Seltzer GO. 1990. Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. Quat Sci Rev. 9(2-3):137–152. doi:10.1016/0277-3791(90)90015-3.
  • Serquet G, Marty C, Dulex JP, Rebetez M. 2011. Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys Res Lett. 38(7):L07703.
  • Skartveit A, Olseth JA. 1986. Modelling slope irradiance at high latitudes. Sol Energy. 36(4):333–344. doi:10.1016/0038-092X(86)90151-9.
  • Skaugen T, Stranden HB, Saloranta T. 2012. Trends in snow water equivalent in Norway (1931–2009). Hydrology Research. 43(4):489–499. doi:10.2166/nh.2012.109.
  • Solberg R, Andersen T. 1994. An automatic system for operational snow-cover monitoring in the Norwegian mountain regions. Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium; Aug 8-12; Pasadena (CA), USA.
  • Stjern CW, Kristjánsson JE, Hansen AW. 2009. Global dimming and global brightening—an analysis of surface radiation and cloud cover data in northern Europe. Int J Climat: J Roy Meteor Soc. 29(5):643–653.
  • Tennant C, Menounos B. 2013. Glacier change of the Columbia Icefield, Canadian Rocky Mountains, 1919–2009. J Glaciol. 59(216):671–686. doi:10.3189/2013JoG12J135.
  • Troll C. 1961. Klima und Pflanzenkleid der Erde in dreidimensionaler Sicht. Naturwissenschaften. 48(9):332–348. doi:10.1007/BF00623935.
  • UNESCO. 1970. Seasonal snow cover: a guide for measurement, compilation and assemblage of data. UNESCO. no. 2.
  • Velikou K, Lazoglou G, Tolika K, Anagnostopoulou C. 2022. Reliability of the ERA5 in replicating mean and extreme temperatures across Europe. Water (Basel). 14(4):543. doi:10.3390/w14040543.
  • Verbyla D, Hegel T, Nolin AW, Van de Kerk M, Kurkowski TA, Prugh LR. 2017. Remote sensing of 2000–2016 alpine spring snowline elevation in dall sheep mountain ranges of Alaska and Western Canada. Remote Sens (Basel). 9(11):1157. doi:10.3390/rs9111157.
  • Vibe. 1860. Kiisten und Meer Norwegens. Petermanns Mitteilungen Ergiinzungsheft. Gotha.
  • Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, Allen RG, Anderson MC, Belward AS, Cohen WB. 2019. Current status of Landsat program, science, and applications. Remote Sens Environ. 225:127–147. doi:10.1016/j.rse.2019.02.015.
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033. doi:10.1080/01431160600589179.
  • Zha Y, Gao J, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens. 24(3):583–594. doi:10.1080/01431160304987.