77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topographical dynamics based on global and UAV-SfM derived DEM products: a case study of transboundary Teesta River, Bangladesh

&
Received 06 Jul 2023, Accepted 22 Feb 2024, Published online: 20 Mar 2024

References

  • Acharya BS, Bhandari M, Bandini F, Pizarro A, Perks M, Joshi DR, Wang S, Dogwiler T, Ray RL, Kharel G. 2021. Unmanned aerial vehicles in hydrology and water management: applications, challenges, and perspectives. Water Resour Res. 57(11):e2021WR029925. doi:10.1029/2021WR029925.
  • AgiSoft PhotoScan Professional (Version 1.8.1 Build 13915, 64 bit) [Software]. 2022. [accessed 29 Sep 2022]. https://www.agisoft.com/pdf/metashape-pro_1_8_en.pdf.
  • Akhter S, Eibek KU, Islam S, Islam ARMT, Chub R, Shuanghe S. 2019. Predicting spatiotemporal changes of channel morphology in the reach of Teesta River, Bangladesh using GIS and ARIMA modeling. Quatern Int. 513:80–94. doi:10.1016/j.quaint.2019.01.022.
  • Alford D. 1992. Hydrological aspects of the himalayan region. Icimod occasional paper 18, international centre for integrated mountain development, Kathmandu, Nepal. doi:10.53055/ICIMOD.115.
  • Annis A, Nardi F, Petroselli A, Apollonio C, Arcangeletti E, Tauro F, Grimaldi S. 2020. UAV-DEMs for small-scale flood hazard mapping. Water (Basel). 12(6):1717. doi:10.3390/w12061717.
  • Anthony EJ, Brunier G, Besset M, Goichot M, Dussouillez P, Nguyen VL. 2015. Linking rapid erosion of the Mekong River delta to human activities. Sci Rep. 5:14745. doi:10.1038/srep14745.
  • Ashrafi ZM, Shuvo SD, Mahmud MS. 2016. Changes in course pattern of the Teesta River after the effect of an engineering project. AGU fall meeting abstracts, EP51A–0859. https://ui.adsabs.harvard.edu/abs/2016AGUFMEP51A0859A.
  • Ashworth PJ, Best JL, Roden JE, Bristowà CS, Klaassen GJ. 2000. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology. 47:533–555. doi:10.1046/j.1365-3091.2000.00305.x.
  • Associated Programme on Flood Management. 2012. Integrated flood management tools series (Issue 13): conservation and restoration of rivers and floodplains. Compiled in Association with World Meteorological Organization (WMO) and the Global Water Partnership (GWP). https://library.wmo.int/doc_num.php?explnum_id=7332.
  • Avand M, Kuriqi A, Khazaei M, Ghorbanzadeh O. 2022. Dem resolution effects on machine learning performance for flood probability mapping. J Hydro Environ Res. 40:1–16. doi:10.1016/j.jher.2021.10.002.
  • Bangladesh Bureau of Statistics. 2010. Census of agriculture 2008: national series, volume 1-structure of agricultural holdings & livestock population. Ministry of planning, government of Bangladesh, Dhaka, pp. 711.
  • Bangladesh Bureau of Statistics. 2016. Statistical year book of Bangladesh, Dhaka. [accessed January 2023]. http://www.bbs.gov.bd/site/page/29855dc1-f2b4-4dc0-9073-f692361112da/Statistical-Yearbook.
  • Bangladesh Water Development Board. 2011. Rivers of Bangladesh. Bdwb reports in August 2011; Dhaka, Bangladesh.
  • Best J. 2019. Anthropogenic stresses on the world’s big rivers. Nature Geosci. 12:7–21. doi:10.1038/s41561-018-0262-x.
  • Biswas PK, Ahmed SS, Pownceby MI, Haque N, Alam S, Zaman MN, Rahman MA. 2018. Heavy mineral resource potential of Tista river sands, Northern Bangladesh. Appl Earth Sci. 127(3):94–105. doi:10.1080/25726838.2018.1488357.
  • Bravard JP, Amoros C, Pautou G, Bornette G, Bournaud M, Creuzé des Châtelliers M, Tachet H. 1997. River incision in south-east France: morphological phenomena and ecological effects. Regul Rivers: Res Manage. 13(1):75–90. doi:10.1002/(SICI)1099-1646(199701)13:1%3C75::AID-RRR444%3E3.0.CO;2-6.
  • Buckley SM, Agram PS, Belz JE, Crippen RE, Gurrola EM, Hensley S, Kobrick M, Lavalle M, Martin JM, Neumann M, et al. 2020. Nasadem: user guide. January, California, USA: NASA/JPL. [accessed March 2022]. https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf.
  • Cai M, Gao J, Fan X, Liu S, Shen W, He C. 2022. Estimation of river discharge using Unmanned Aerial Vehicle (UAV) based on manning formula for an ungauged alpine river in the eastern Qilian mountains. Water (Basel). 14(13):2100. doi:10.3390/w14132100.
  • Chan FKS, Yang LE, Mitchell G, Wright N, Guan M, Lu X, Wang Z, Montz B, Adekola O. 2022. Comparison of sustainable flood risk management by four countries–the United Kingdom, the Netherlands, the United States, and Japan–and the implications for Asian coastal megacities. Nat Hazards Earth Syst Sci. 22:2567–2588. doi:10.5194/nhess-22-2567-2022.
  • Chauhan A. 2023. Glacial lake outburst flood kills 14 in Sikkim, 102 people missing: What is GLOF, and why does it happen? The Indian express (published on 06 October 2023, online). [accessed 16 January 2024]. https://indianexpress.com/article/explained/explained-climate/glacial-lake-outburst-flood-glof-sikkim-8968562/.
  • Chen W, Yao T, Zhang G, Li F, Zheng G, Zhou Y, Xu F. 2022. Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan plateau. Cryosphere. 16:197–218. doi:10.5194/tc-16-197-2022. 2022.
  • Cheng NN, He HM, Yang SY, Lu YJ, Jing ZW. 2017. Impacts of topography on sediment discharge in Loess Plateau, China. Quat Int. 440(Part B):119–129. doi:10.1016/j.quaint.2016.12.005.
  • Cirillo D. 2020. Digital field mapping and drone-aided survey for structural geological data collection and seismic hazard assessment: case of the 2016 central Italy earthquakes. Appl Sci. 10(15):5233. doi:10.3390/app10155233.
  • Clapuyt F, Vanacker V, Van Oost K. 2016. Reproducibility of UAV-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology. 260:4–15. doi:10.1016/j.geomorph.2015.05.011.
  • Corsini A, Borgatti L, Cervi F, Dahne A, Ronchetti F, Sterzai P. 2009. Estimating mass-wasting processes in active earth slides-Earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Nat Hazards Earth Syst Sci. 9:433–439. doi:10.5194/nhess-9-433-2009.
  • Coveney S, Roberts K. 2017. Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int J Remote Sens. 38(8–10):3159–3180. doi:10.1080/01431161.2017.1292074.
  • Crippen R, Buckley S, Belz E, Gurrola E, Hensley S, Kobrick M, Lavalle M, Martin J, Neumann M, Nguyen Q. 2016. Nasadem global elevation model: methods and progress. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLI-B4:125–128. doi:10.5194/isprs-archives-XLI-B4-125-2016.
  • Croke JC, Purvis-Smith D, Thompson CJ, Lymburner L. 2008. The effect of local-scale valley constrictions on flood inundation and catchment-scale sediment delivery in the Fitzroy River Basin, Australia. IAHS-AISH Publication. 325:200–207. https://iahs.info/uploads/dms/14514.31-200-207-25-325-Croke.pdf.
  • Darby SE, Dunn FE, Nicholls RJ, Rahman M, Riddy L. 2015. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–Brahmaputra–meghna delta. Environ Sci Process Impacts. 17(9):1587–1600. doi:10.1039/C5EM00252D.
  • De Haas T, Nijland W, McArdell BW, Kalthof MWML. 2021. Case report: optimization of topographic change detection with UAV structure-from-motion photogrammetry through survey co-alignment. Front Remote Sens. 2:626810. doi:10.3389/frsen.2021.626810.
  • Department of Defense. 2020. Global positioning system standard positioning service performance standard, 5th ed. Arlington, TX, USA: US Department of Defense. https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf.
  • Dhote PR, Thakur PK, Chouksey A, Srivastav SK, Raghvendra S, Rautela P, Ranjan R, Allen S, Stoffel M, Bisht S, et al. 2022. Synergistic analysis of satellite, unmanned aerial vehicle, terrestrial laser scanner data and process-based modelling for understanding the dynamics and morphological changes around the snout of Gangotri Glacier, India. Geomorphology. 396:1080052. doi:10.1016/j.geomorph.2021.108005.
  • Dunn FE, Nicholls RJ, Darby SE, Cohen S, Zarfl C, Fekete BM. 2018. Projections of historical and 21st century fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Sci Total Environ. 642:105–116. doi:10.1016/j.scitotenv.2018.06.006.
  • Dunning SA, Massey CI, Rosser NJ. 2009. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology. 103:17–29. doi:10.1016/j.geomorph.2008.04.013.
  • Elahi KM, Ahmed KS, Mafizuddin M. 1991. Riverbank erosion, flood and population displacement in Bangladesh: an overview. In: Elahi KM, Ahmed KS, Mafizuddin M., editor. River bank erosion, flood and population displacement in Bangladesh. Riverbank erosion impact study. Dhaka: Jahangirnagar University; p. 95–109.
  • Elahi KM, Ara I. 2008. Understanding the monga in northern Bangladesh. Dhaka, Bangladesh: Academic press and publishers library.
  • Elkhrachy I. 2021. Accuracy assessment of low-cost Unmanned Aerial Vehicle (UAV) photogrammetry. Alex Eng J. 60(6):5579–5590. doi:10.1016/j.aej.2021.04.011.
  • Escobar Villanueva JR, Iglesias Martinez L, Perez Montiel JI. 2019. Dem generation from fixed-wing UAV imaging and LiDAR-derived ground control points for flood estimations. Sensors. 19(14):3205. doi:10.3390/s19143205.
  • Faisal BMR, Hayakawa YS. 2022. Geomorphological processes and their connectivity in hillslope, fluvial, and coastal areas in Bangladesh: a review. Prog Earth Planet Sci. 9:41. doi:10.1186/s40645-022-00500-8.
  • Faisal BMR, Hayakawa YS. 2023. Geomorphometric characterization and sediment connectivity of the middle Brahmaputra river basin. Geomorphology. 429:108665. doi:10.1016/j.geomorph.2023.108665.
  • Faisal BMR, Rahman H, Sharifee NH, Sultana N, Islam MI, Ahammad T. 2019. Remotely sensed Boro rice production forecasting using MODIS-NDVI: a Bangladesh perspective. AgriEngineering. 1(3):356–375. doi:10.3390/agriengineering1030027.
  • Fanta-Jende P, Steininger D, Bruckmüller F, Sulzbachner C. 2020. A versatile UAV near real-time mapping solution for disaster response–concept, ideas and implementation. Int Arch Photogramm Remote Sens Spat Inf Sci. XLIII-B1-2020:429–435. doi:10.5194/isprs-archives-XLIII-B1-2020-429-2020.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, et al. 2007. The shuttle radar topography mission. Rev Geophys. 45(2):RG2004. doi:10.1029/2005RG000183.
  • Fazeli H, Samadzadegan F, Dadrasjavan F. 2016. Evaluating the potential of RTK-UAV for automatic point cloud generation in 3D rapid mapping. Int Arch Photogramm Remote Sens Spat Inf Sci. XLI-B6:221–226. doi:10.5194/isprs-archives-XLI-B6-221-2016.
  • Forlani G, Dall’Asta E, Diotri F, UMd C, Roncella R, Santise M. 2018. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 10(2):311. doi:10.3390/rs10020311.
  • Franks S, Storey J, Rengarajan R. 2020. The new Landsat collection-2 digital elevation model. Remote Sens. 12(23):3909. doi:10.3390/rs12233909.
  • Ghosh K. 2014. Planform pattern of the lower Teesta River after the Gazaldoba barrage. Indian J Geogr Environ. 13:127–137.
  • Giordan D, Adams MS, Aicardi I, Alicandro M, Allasia P, Baldo M, De Berardinis P, Dominici D, Godone D, Hobbs P, et al. 2020. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull Eng Geol Environ. 79:3437–3481. doi:10.1007/s10064-020-01766-2.
  • Giordan D, Hayakawa YS, Nex F, Tarolli P. 2018. Preface: The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazards. Nat Hazards Earth Syst Sci. 18:3085–3087. doi:10.5194/nhess-18-3085-2018.
  • Giulietti N, Allevi G, Castellini P, Garinei A, Martarelli M. 2022. Rivers water level assessment using UAV photogrammetry and RANSAC method and the analysis of sensitivity to uncertainty sources. Sensors. 22(14):5319. doi:10.3390/s22145319.
  • Goyal MK, Goswami UP. 2018. Teesta river and its ecosystem. In: Singh D, editor. The Indian rivers. Springer Hydrogeology. Springer Nature Singapore Pte Ltd.; p. 537–551. doi:10.1007/978-981-10-2984-4_37.
  • Graf WL. 2000. Locational probability for a dammed, urbanizing stream: Salt River, Arizona, USA. Environ Manag. 25:321–335. doi:10.1007/s002679910025.
  • Grunwald G, Ciećko A, Kozakiewicz T, Krasuski K. 2023. Analysis of GPS/EGNOS positioning quality using different ionospheric models in UAV navigation. Sensors. 23(3):1112. doi:10.3390/s23031112.
  • Gupta N, Mishra A, Agrawal NK, Shrestha AB. 2019. Potential impacts of climate change on water resources and adaptation policies in the Brahmaputra river basin. Working paper 2019/8, ICIMOD, Kathmandu, Nepal. [accessed 25 January 2024]. https://lib.icimod.org/api/files/50192326-a4cb-417b-a1fd-16b170586128/icimod622_13.1.2020.pdf.
  • Haque CE, Azad MAK, Choudhury MUI. 2019. Discourse of flood management approaches and policies in Bangladesh: mapping the changes, drivers, and actors. Water (Basel). 11(12):2654. doi:10.3390/w11122654.
  • Hashemi-Beni L, Jones J, Thompson G, Johnson C, Gebrehiwot A. 2018. Challenges and opportunities for UAV-based digital elevation model generation for flood-risk management: a case of Princeville, North Carolina. Sensors. 18(11):3843. doi:10.3390/s18113843.
  • Hayakawa YS, Fujita H, Lee S, Sagara T. 2017. Developing a data-sharing system for geospatial research: A case study on the Joint Research Assist System (JoRAS). Int J Spat Data Infr. 12:141–160. https://ijsdir.sadl.kuleuven.be/index.php/ijsdir/article/view/459.
  • Hayakawa YS, Obanawa H. 2020. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and UAS-based SfM. Sensors. 20(12):3403. doi:10.3390/s20123403.
  • Hemmelder S, Marra W, Markies H, Jong D, M S. 2018. Monitoring river morphology & bank erosion using UAV imagery–a case study of the river Buëch, Hautes-Alpes, France. Int J Appl Earth Obs Geoinf. 73:428–437. doi:10.1016/j.jag.2018.07.016.
  • Higano Y, Islam MF. 2002. Rural poverty alleviation through large-scale irrigation planning: problem and prospects of the Dalia Barrage project, Bangladesh. Bull Res Inst Econ Sci. 32:371–384.
  • Higgins S, Overeem I, Rogers K, Kalina E. 2018. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elementa Sci Anthr. 6:20. doi:10.1525/elementa.269.
  • Hinge L, Gundorph J, Ujang U, Azri S, Anton F, Rahman AA. 2019. Comparative analysis of 3D photogrammetry modeling software packages for drones survey. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-4/W12:95–100. doi:10.5194/isprs-archives-XLII-4-W12-95-2019.
  • Hsieh Y-C, Chan Y-C, Hu J-C. 2016. Digital elevation model differencing and error estimation from multiple sources: a case study from the Meiyuan Shan landslide in Taiwan. Remote Sens. 8(3):199. doi:10.3390/rs8030199.
  • Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, Jong D, M S. 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ. 150:93–103. doi:10.1016/j.rse.2014.04.025.
  • Islam MF. 2016. The Teesta River and its basin area. In: Islam M. F., editor. Water use and poverty reduction. Tokyo, Japan: Springer; p. 13–42. doi:10.1007/978-4-431-55172-0.
  • Islam MS, Islam ARMT, Rahman F, Ahmed F, Haque MN. 2014. Geomorphology and land use mapping of northern part of Rangpur district. Bangladesh. Int J Geomat Geosci. 2(4):145–150.
  • James LA, Hodgson ME, Ghoshal S, Latiolais MM. 2012. Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology. 137(1):181–198. doi:10.1016/j.geomorph.2010.10.039.
  • James MR, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res. 117:1–17. doi:10.1029/2011JF002289.
  • James MR, Robson S, d’Oleire-Oltmanns S, Niethammer U. 2017. Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology. 280:51–66. doi:10.1016/j.geomorph.2016.11.021.
  • Joerg PC, Zemp M. 2014. Evaluating volumetric glacier change methods using airborne laser scanning data. Geogr Ann A: Phys Geogr. 96(2):135–145. doi:10.1111/geoa.12036.
  • Kale VS. 2002. Fluvial geomorphology of Indian rivers: an overview. Prog Phys Geogr. 26(3):400–433. doi:10.1191/0309133302pp343ra.
  • Kaliraj S, Chandrasekar N, Ramachandran KK, Srinivas Y, Saravanan S. 2017. Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egypt J Remote Sens. 20(2):169–185. doi:10.1016/j.ejrs.2017.04.003.
  • Khan A. 2001. Morphological changes due to construction of a barrage on the Teesta River. Thesis Available from: Lib.buet.ac.bd. [accessed February 2022]. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/188.
  • Khan AS, Hossain MM. 2001. Assessment of morphological changes due to construction of a barrage in the Teesta River. The 45th convention of IEB, Khulna, Bangladesh, 16–18 February 2001.
  • Khan MSS, Islam ARMT. 2015. Anthropogenic impact on morphology of Teesta River in northern Bangladesh: an exploratory study. J Geosci Geomat. 3(3):50–55. http://pubs.sciepub.com/jgg/3/3/1.
  • Khan MY, Shafique M, Turab SA, Ahmad N. 2021. Characterization of an unstable slope using geophysical, UAV, and geological techniques: Karakoram Himalaya, northern Pakistan. Front Earth Sci. 9:668011. doi:10.3389/feart.2021.668011.
  • Kiedrzyńska E, Kiedrzyński M, Zalewski M. 2015. Sustainable floodplain management for flood prevention and water quality improvement. Nat Hazards. 76:955–977. doi:10.1007/s11069-014-1529-1.
  • Kirby E, Whipple K. 2001. Quantifiying differential rock uplift rates via stream profile analysis. Geology. 29(5):415–418. doi:10.1130/0091-7613(2001)029%3C0415:QDRURV%3E2.0.CO;2.
  • Kraaijenbrink P, Meijer SW, Shea JM, Pellicciotti F, Jong D, Immerzeel SM, W W. 2016. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Ann Glaciol. 57(71):103–113. doi:10.3189/2016AoG71A072.
  • Langhammer J, Vacková T. 2018. Detection and mapping of the geomorphic effects of flooding using UAV photogrammetry. Pure Appl Geophys. 175(9):3223–3245. doi:10.1007/s00024-018-1874-1.
  • Le Heron DP, Vandyk TM, Kuang H, Liu Y, Chen X, Wang Y, Yang Z, Scharfenberg L, Davies B, Shields G. 2019. Bird’s-eye view of an Ediacaran subglacial landscape. Geology. 47(8):705–709. doi:10.1130/G46285.1.
  • Li H, Zhao J, Yan B, Yue L, Wang L. 2022. Global DEMs vary from one to another: an evaluation of newly released Copernicus, NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data. Int J Digit Earth. 15(1):1149–1168. doi:10.1080/17538947.2022.2094002.
  • Lukram IM, Tandon SK. 2022. Tributary fans of the Middle Teesta basin in Sikkim-Darjeeling Himalaya, NE India: their contribution to valley-filling processes. Geological J. 57(2):593–610. doi:10.1002/gj.4313.
  • Mandal SP, Chakrabarty A. 2016. Flash flood risk assessment for upper Teesta river basin: using the hydrological modeling system (HEC-HMS) software. Model Earth Syst Environ. 2:59. doi:10.1007/s40808-016-0110-1.
  • Milan DJ, Heritage GL, Large AR, Fuller IC. 2011. Filtering spatial error from DEMs: implications for morphological change estimation. Geomorphology. 125(1):160–171. doi:10.1016/j.geomorph.2010.09.012.
  • Mirchandani M. 2016. The Teesta water dispute: geopolitics, myth and economics. India: Observer research foundation. [accessed 16 January 2024]. https://policycommons.net/artifacts/1349535/the-teesta-water-dispute/1961694/.
  • Mondal MS. 2022. Local scour at complex bridge piers in Bangladesh rivers: reflections from a large study. Water (Basel). 14:2405. doi:10.3390/w14152405.
  • Mondal MSH, Islam MS. 2017. Chronological trends in maximum and minimum water flows of the Teesta River, Bangladesh, and its implications. Jamba: J Disaster Risk Stud. 9(1):a373. doi:10.4102/jamba.v9i1.373.
  • Montgomery DR, Brandon MT. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett. 201(3):481–489. doi:10.1016/S0012-821X(02)00725-2.
  • Morris-Oswald T, Sinclair AJ. 2005. Values and floodplain management: case studies from the Red River Basin, Canada. Environ Hazards. 6(1):9–22. doi:10.1016/j.hazards.2004.10.001.
  • Mullick RA, Babel MS, Perret SR. 2010. Flow characteristics and environmental flow requirements for the Teesta River, Bangladesh. In: Proceedings of international conference on environmental aspects of Bangladesh (ICEAB10), Fukuoka, Japan, September 04, 2010, pp. 159–162.
  • NASA JPL. 2020. Nasadem merged DEM global 1 arc second V001 [Data set]. NASA EOSDIS Land Processes DAAC. doi:10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.
  • Oguchi T, Hayakawa YS, Wasklewicz T. 2022. 6.50-Remote data in fluvial geomorphology: characteristics and applications. In: Shroder JF, editor. Treatise on geomorphology. 2nd ed. Academic press; p. 1116–1142. doi:10.1016/B978-0-12-818234-5.00103-6.
  • Ogura T, Mizuno T, Katayama D, Yamanaka D, Sato Y. 2023. Estimating the amount of excavated soil using RTK-UAV in excavation projects that consider the habitat of rare species (in Japanese with English abstract). Ecol. Civil Eng. 22:00012. doi:10.3825/ece.22-00012.
  • Özcan O, Özcan O. 2021. Multi-temporal UAV based repeat monitoring of rivers sensitive to flood. J Maps. 17(3):163–170. doi:10.1080/17445647.2020.1820387.
  • Palash W, Bajracharya SR, Shrestha AB, Wahid S, Hossain MS, Mogumder TK, Mazumder LC. 2023. Climate change impacts on the hydrology of the Brahmaputra River Basin. Climate. 11:18. doi:10.3390/cli11010018.
  • Pangare G, Nishat B, Liao X, Qaddumi HM. 2021. The restless river. Washington, DC: World Bank. doi:10.1596/36258.
  • Parizi E, Khojeh S, Hosseini SM, Moghadam YJ. 2022. Application of unmanned aerial vehicle DEM in flood modeling and comparison with global DEMs: case study of Atrak River Basin, Iran. J Environ Manage. 317:115492. doi:10.1016/j.jenvman.2022.115492.
  • Picco L, Pellegrini G, Iroumé A, Lenzi M, Rainato R. 2023. The role of in-channel vegetation in driving and controlling the geomorphic changes along a gravel-bed river. Geomorphology. 437:108803. doi:10.1016/j.geomorph.2023.108803.
  • Piégay H, Kondolf GM, Minear JT, Vaudor L. 2015. Trends in publications in fluvial geomorphology over two decades: a truly new era in the discipline owing to recent technological revolution? Geomorphology. 248:489–500. doi:10.1016/j.geomorph.2015.07.039.
  • Prasai S, Surie MD. 2013. Political economy analysis of the Teesta River basin. New Delhi: The Asia Foundation. [accessed May 2022]. http://waterbeyondborders.net/wp-content/uploads/2017/06/TheAsiaFoundation.PoliticalEconomyAnalysisoftheTeestaRiverBasin.March20131.pdf.
  • Raff JL, Goodbred SL, Pickering JL, Sincavage RS, Ayers JC, Hossain MS, Wilson CA, Paola C, Steckler MS, Mondal DR, et al. 2023. Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts. Nat Commun. 14:2429. doi:10.1038/s41467-023-38057-9.
  • Rahman MM, Arya DS, Goel NK, Dhamy AP. 2011. Design flow and stage computations in the Teesta River, Bangladesh, using frequency analysis and MIKE 11 modeling. J Hydrol Eng. 16:176–186. doi:10.1061/(ASCE)HE.1943-5584.0000299.
  • Rai N, Neupane S, Rana S, Belbase D, Khawas V. 2019. Built on sand an examination of the practice of sand mining in south Asia with reflections from the Mahakali and the Teesta rivers. Bakhundole, Lalitpur: Policy Entrepreneurs Incorporated (PEI). [accessed January 2023]. www.pei.center. https://pei.center/wp-content/uploads/2019/09/Policy-Brief-Built-on-Sand-20Sept2019-Final.pdf.
  • Rajakumari S, Mahesh R, Sarunjith KJ, Ramesh R. 2022. Volumetric change analysis of the Cauvery delta topography using radar remote sensing. Egypt J Remote Sens Space Sci. 25(3):687–695. doi:10.1016/j.ejrs.2022.06.003.
  • Ramsankaran R, Navinkumar PJ, Dashora A, Kulkarni A. 2020. UAV-based survey of Glaciers in Himalayas: opportunities and challenges. J Indian Soc Remote Sens. 49:1171–1187. doi:10.1007/s12524-020-01300-7.
  • Rhee DS, Kim YD, Kang B, Kim D. 2018. Applications of unmanned aerial vehicles in fluvial remote sensing: an overview of recent achievements. KSCE J Civ Eng. 22:588–602. doi:10.1007/s12205-017-1862-5.
  • Rinaldi M, Belletti B, Bussettini M, Comiti F, Golfieri B, Lastoria B, Surian N. 2017. New tools for the hydromorphological assessment and monitoring of European streams. J Environ Manag. 202:363–378. doi:10.1016/j.jenvman.2016.11.036.
  • Rumsby B, Brasington J, Langham J, McLelland S, Middleton R, Rollinson G. 2008. Monitoring and modelling particle and reach-scale morphological change in gravel-bed rivers: applications and challenges. Geomorphology. 93:40–54. doi:10.1016/j.geomorph.2006.12.017.
  • Rusnák M, Sládek J, Kidová A, Lehotský M. 2018. Template for high-resolution river landscape mapping using UAV technology. Measurement ( Mahwah N J). 115:139–151. doi:10.1016/j.measurement.2017.10.023.
  • Saito H, Uchiyama S, Hayakawa YS, Obanawa H. 2018. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog Earth Planet Sci. 5:15. doi:10.1186/s40645-018-0169-6.
  • Salandra ML, Roseto R, Mele D, Dellino P, Capolongo D. 2022. Probabilistic hydro-geomorphological hazard assessment based on UAV-derived high-resolution topographic data: the case of Basento river (Southern Italy). Sci. Total Environ. 842:156736. doi:10.1016/j.scitotenv.2022.156736.
  • Salmoral G, Rivas Casado M, Muthusamy M, Butler D, Menon PP, Leinster P. 2020. Guidelines for the use of unmanned aerial systems in flood emergency response. Water (Basel). 12(2):521. doi:10.3390/w12020521.
  • Sattar A. 2023. Sikkim glacial lake outburst spotlights climate vulnerability of the Himalayas. Nature India. doi:10.1038/d44151-023-00152-7.
  • Schwanghart W, Scherler D. 2017. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques. Earth Surface Dynamics. 5:821–839. doi:10.5194/esurf-5-821-2017.
  • Schwat E, Istanbulluoglu E, Horner-Devine A, Anderson S, Knuth F, Shean D. 2023. Multi-decadal erosion rates from glacierized watersheds on Mount Baker, Washington, USA, reveal topographic, climatic, and lithologic controls on sediment yields. Geomorphology. 438:108805. doi:10.1016/j.geomorph.2023.108805.
  • Şerban G, Rus I, Vele D, Breţcan P, Alexe M, Petrea D. 2016. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: case study in the north-east of Apuseni Mountains, Transylvania. Nat Hazards. 82(3):1817–1832. doi:10.1007/s11069-016-2266-4.
  • Serra-Llobet A, Jähnig SC, Geist J, Kondolf GM, Damm C, Scholz M, Lund J, Opperman JJ, Yarnell SM, Pawley A, et al. 2022. Restoring rivers and floodplains for habitat and flood risk reduction: experiences in multi-benefit floodplain management from California and Germany. Front Environ Sci. 9:778568. doi:10.3389/fenvs.2021.778568.
  • Sharma TPP, Zhang J, Koju UA, Zhang S, Bai Y, Suwal MK. 2019. Review of flood disaster studies in Nepal: a remote sensing perspective. Int J Disaster Risk Reduct. 34:18–27. doi:10.1016/j.ijdrr.2018.11.022.
  • Simon A, Rinaldi M. 2006. Disturbance, stream incision, and channel evolution: the roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology. 79(3-4):361–383. doi:10.1016/j.geomorph.2006.06.037.
  • Śledź S, Ewertowski M, Piekarczyk J. 2021. Applications of Unmanned Aerial Vehicle (UAV) surveys and structure from motion photogrammetry in glacial and periglacial geomorphology. Geomorphology. 378:107620. doi:10.1016/j.geomorph.2021.107620.
  • Smith MW, Carrivick JL, Quincey DJ. 2015. Structure from motion photogrammetry in physical geography. Progr Phys Geogr. 40:1–29. doi:10.1177/0309133315615805.
  • Stott T. 2013. Review of research in fluvial geomorphology 2010–2011. Prog Phys Geogr. 37(2):248–258. doi:10.1177/0309133313477124.
  • Sultana MR. 2022a. Bank Erosion and sediment deposition in Teesta River: a spatiotemporal analysis. In: Bhunia GS, Chatterjee U, Lalmalsawmzauva K, Shit PK., editor. Anthropogeomorphology. Geography of the physical environment. Cham: Springer; p. 73–89. doi:10.1007/978-3-030-77572-8_4.
  • Sultana MR. 2022b. Dislocation and involuntary migration: lessons from the Teesta River bank erosion in Bangladesh. In: Mishra M, Singh RB, Lucena AJd, Chatterjee S., editor. Regional development planning and practice. advances in geographical and environmental sciences. Singapore: Springer; p. 121–147. doi:10.1007/978-981-16-5681-1_6.
  • Syed A, Haq A, Uzzaman A, Goodrich CG, Mallick D, Mini G, Sharma G, Nyima K, Mamnun N, Varma N, et al. 2017. The Teesta basin: enough water for power and agriculture for all?. Himalayan adaptation, water and resilience (HI-AWARE) working paper 12, Nepal. [accessed 18 January 2024]. https://lib.icimod.org/record/33669.
  • Tang C, Tanyas H, Van Westen CJ, Tang C, Fan X, Jetten VG. 2019. Analysing post-earthquake mass movement volume dynamics with multi-source DEMs. Eng Geol. 248:89–101. doi:10.1016/j.enggeo.2018.11.010.
  • Tarannum T, Bhuyan A, Badhon FF. 2018. Morphological changes of river Teesta during the Last decade. In: Proceedings of the 1st national conference on water resources engineering (NCWRE-2018), CUET, Chittagong, Bangladesh, 21-22 March 2018.
  • Tempa K, Peljor K, Wangdi S, Ghalley R, Jamtsho K, Ghalley S, Pradhan P. 2021. Uav technique to localize landslide susceptibility and mitigation proposal: a case of Rinchending Goenpa landslide in Bhutan. Nat Hazards Res. 1(4):171–186. doi:10.1016/j.nhres.2021.09.001.
  • Tran T, Nguyen BQ, Vo ND, Le M, Nguyen Q, Lakshmi V, Bolten JD. 2023. Quantification of global Digital Elevation Model (DEM)–a case study of the newly released NASADEM for a river basin in Central Vietnam. J Hydrol: Regional Studies. 45:101282. doi:10.1016/j.ejrh.2022.101282.
  • Tseng CM, Lin CW, Stark CP, Liu JK, Fei LY, Hsieh YC. 2013. Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation. Earth Surf Process Landf. 38:1587–1601. doi:10.1002/esp.3454.
  • Tsunetaka H, Hotta N, Hayakawa YS, Imaizumi F. 2020. Spatial accuracy assessment of unmanned aerial vehicle-based structures from motion multi-view stereo photogrammetry for geomorphic observations in initiation zones of debris flows, Ohya landslide, Japan. Prog Earth Planet Sci. 7(1):1–14. doi:10.1186/s40645-020-00336-0.
  • Uuemaa E, Ahi S, Montibeller B, Muru M, Kmoch A. 2020. Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 12(21):3482. doi:10.3390/rs12213482.
  • Van Denderen RP, Kater E, Jans LH, Schielen RMJ. 2022. Disentangling changes in the river bed profile: the morphological impact of river interventions in a managed river. Geomorphology. 408:108244. doi:10.1016/j.geomorph.2022.108244.
  • Van Iersel WK, Addink EA, Straatsma MW, Middelkoop H. 2016. River floodplain vegetation classification using multi-temporal high-resolution colour infrared UAV imagery. Proceedings of the GEOBIA 2016: solutions and synergies, Enschede, The Netherlands, 14–16 September 2016.
  • Van Woerkom T, Steiner JF, Kraaijenbrink PDA, Miles ES, Immerzeel WW. 2019. Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya. Earth Surf Dynam. 7:411–427. doi:10.5194/esurf-7-411-2019.
  • Wang S, Ren Z, Wu C, Lei Q, Gong W, Ou Q, Zhang H, Ren G, Li C. 2019. Dem generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology. 336:107–118. doi:10.1016/j.geomorph.2019.03.016.
  • Wang T, Watanabe T. 2022. Monitoring campsite soil erosion by structure-from-motion photogrammetry: a case study of Kuro-dake Campsites in Daisetsuzan national park, Japan. J Environ Manage. 314:115106. doi:10.1016/j.jenvman.2022.115106.
  • Watson CS, Kargel JS, Tiruwa B. 2019. UAV-Derived Himalayan topography: hazard assessments and comparison with global DEM products. Drones. 3(1):18. doi:10.3390/drones3010018.
  • Wheaton JM, Brasington J, Darby SE, Sear DA. 2010. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Landf. 35:136–156. doi:10.1002/esp.1886.
  • Wobus C, Whipple KX, Kirby E, Synder N, Johnson J, Spyropolon K, Crosby B, Sheehan D. 2006. Tectonics from topography: procedures, promise, and pitfalls. In: Willett SD, Hovius N, Brandon MT, Fisher DM., editor. Tectonics, climate, and landscape evolution. Geol. Soc. Am. Special paper 398. p. 55–73. doi:10.1130/2006.2398(04).
  • Wohl E. 2014. Time and the rivers flowing: fluvial geomorphology since 1960. Geomorphology. 216(1):263–282. doi:10.1016/j.geomorph.2014.04.012.
  • Woodget AS, Carbonneau PE, Visser F, Maddock IP. 2015. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf Process Landf. 40:47–64. doi:10.1002/esp.3613.
  • Yang C, Jen C, Cheng Y, Lin J. 2021. Quantification of mudcracks-driven erosion using terrestrial laser scanning in laboratory runoff experiment. Geomorphology. 375:107527. doi:10.1016/j.geomorph.2020.107527.
  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015. A global boom in hydropower dam construction. Aquat Sci. 77:161–170. doi:10.1007/s00027-014-0377-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.