78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Climate indices as predictors of global soil organic carbon stocks

, , , , , , , , , & show all
Received 01 Sep 2023, Accepted 22 Mar 2024, Published online: 15 Apr 2024

References

  • Abramoff RZ, Guenet B, Zhang H, Georgiou K, Xu X, Rossel RAV, Yuan W, Ciais P. 2022. Improved global-scale predictions of soil carbon stocks with Millennial Version 2. Soil Biol Biochem. 164:108466. doi:10.1016/j.soilbio.2021.108466.
  • Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. 2015. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biol Biochem. 88:390–402. doi:10.1016/j.soilbio.2015.06.008.
  • Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatté C. 2018. Atmosphere–soil carbon transfer as a function of soil depth. Nature. 559:599–602. doi:10.1038/s41586-018-0328-3.
  • Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N, . 2018. Global biogeography of highly diverse protistan communities in soil. ISME J. 7(3):652–659. doi:10.1038/ismej.2012.147.
  • Batjes NH, Ribeiro E, Oostrum AV, Leenaars J, Hengl T, Jesus JM. 2017. WoSIS: providing standardised soil profile data for the world. Earth Syst Sci Data. 9:1–14. doi:10.5194/essd-9-1-2017.
  • Budyko MI. 1961. The heat balance of the earth's surface. Sov Geogr. 2:3–13.
  • Canarini A, Kiær LP, Dijkstra FA. 2017. Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biol Biochem. 112:90–99. doi:10.1016/j.soilbio.2017.04.020.
  • Clarke J, Huntingford C, Ritchie P, Cox P. 2021. The compost bomb instability in the continuum limit. Eur. Phys. J. Spec. Top. 230:3335–3341. doi:10.1140/epjs/s11734-021-00013-3.
  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408:184–187. doi:10.1038/35041539.
  • Crowther TW, Hoogen JV, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS. 2019. The global soil community and its influence on biogeochemistry. Science. 365:eaav0550. doi:10.1126/science.aav0550.
  • Davidson EA. 2020. Carbon dioxide loss from tropical soils increases on warming. London: Nature Publishing Group UK.
  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440:165–173. doi:10.1038/nature04514.
  • Doetterl S, Stevens A, Six J, Merckx R, Oost K, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci. 8:780–783. doi:10.1038/ngeo2516.
  • Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. 2006. IPCC guidelines for national greenhouse gas inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  • Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil MC, Gessler A, Galiano L, Miranda JC, Spor A. 2018. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 12:1061–1071. doi:10.1038/s41396-018-0079-z.
  • Fang Q, Wang G, Xue B, Liu T, Kiem A. 2018. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? Sci Total Environ. 635:1255–1266. doi:10.1016/j.scitotenv.2018.04.225.
  • Frank DA, Pontes AW, McFarlane KJ. 2012. Controls on soil organic carbon stocks and turnover among North American ecosystems. Ecosystems. 15:604–615. doi:10.1007/s10021-012-9534-2.
  • Friedlingstein P, Cox P, Betts R, Bopp L, Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I. 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim. 19:3337–3353. doi:10.1175/JCLI3800.1.
  • Giardina CP, Litton CM, Crow SE, Asner GP. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat Clim Change. 4:822–827. doi:10.1038/nclimate2322.
  • Guo LB, Gifford R. 2002. Soil carbon stocks and land use change: A meta analysis. Glob Change Biol. 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x.
  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol. 34:623–642. doi:10.1002/joc.3711.
  • Hartley IP, Hill TC, Chadburn SE, Hugelius G. 2021. Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nat Commun. 12:6713. doi:10.1038/s41467-021-27101-1.
  • Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 451:289–292. doi:10.1038/nature06591.
  • Hengl T, Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotić A, Wei S, Wright MN, Geng X, Bauer-Marschallinger B. 2017. Soilgrids250m: global gridded soil information based on machine learning. PLoS One. 12:e0169748. doi:10.1371/journal.pone.0169748.
  • Jenny H. 1980. The soil resource: origin and behavior. New York: Springer.
  • Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
  • Johnston ASA, Sibly RM. 2018. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2:1597–1602. doi:10.1038/s41559-018-0648-6.
  • Koven CD, Hugelius G, Lawrence DM, Wieder WR. 2017. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat Clim Change. 7:817–822. doi:10.1038/nclimate3421.
  • Luo Z, Feng W, Luo Y, Baldock J, Wang E. 2017. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Chang Biol. 23:4430–4439. doi:10.1111/gcb.13767.
  • Mathieu JA, Hatté C, Balesdent J, Parent E. 2015. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob Chang Biol. 21:4278–4292. doi:10.1111/gcb.13012.
  • Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 358:101–105. doi:10.1126/science.aan2874.
  • Nottingham AT, Meir P, Velasquez E, Turner BL. 2020. Soil carbon loss by experimental warming in a tropical forest. Nature. 584:234–237. doi:10.1038/s41586-020-2566-4.
  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature. 298:156–159. doi:10.1038/298156a0.
  • Qi Y, Ming X. 2001. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant Soil. 237:15–23. doi:10.1023/A:1013368800287.
  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci. 46:230A-21.
  • Rumpel C, Kögel-Knabner I. 2011. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil. 338:143–158. doi:10.1007/s11104-010-0391-5.
  • Sanderman J, Hengl T, Fiske GJ. 2017. Soil carbon debt of 12,000 years of human land use. PNAS. 114:9575–9580. doi:10.1073/pnas.1706103114.
  • Serreze MC, Barry RG. 2011. Processes and impacts of Arctic amplification: A research synthesis. Glob Planet Change. 77:85–96. doi:10.1016/j.gloplacha.2011.03.004.
  • Shi Z, Crowell S, Luo Y, Moore B. 2018. Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nat Commun. 9: 2171. doi:10.1038/s41467-018-04526-9.
  • Slivinski LC, Compo GP, Whitaker JS, Sardeshmukh PD, Giese BS, McColl C, Allan B, Yin X, Vose R, Titchner H. 2019. Towards a more reliable historical reanalysis: improvements for version 3 of the twentieth century reanalysis system. Quart J Roy Meteor Soc. 145:2876–2908. doi:10.1002/qj.3598.
  • Smith P. 2005. An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. Eur J Soil Sci. 56:673–680. doi:10.1111/j.1365-2389.2005.00708.x.
  • Soong JL, Phillips CL, Ledna C, Koven CD, Torn MS. 2020. CMIP5 models predict rapid and deep soil warming over the 21st century. J Geophys Res Biogeosci. 125:e2019JG005266. doi:10.1029/2019JG005266.
  • Thornton PE, Rosenbloom NA. 2005. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Modell. 189:25–48. doi:10.1016/j.ecolmodel.2005.04.008.
  • Tiessen H, Cuevas E, Chacon P. 1994. The role of soil organic matter in sustaining soil fertility. Nature. 371:783–785. doi:10.1038/371783a0.
  • Varney RM, Sarah EC, Friedlingstein P, Eleanor JB, Charles DK, Hugelius G, Cox PM. 2020. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat Commun. 11:5544. doi:10.1038/s41467-020-19208-8.
  • Wang G, Wilfred MP, Melanie AM. 2013. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol Appl. 23:255–272. doi:10.1890/12-0681.1.
  • Wang W, Dalal RC, Moody PW, Smith CJ. 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem. 35:273–284. doi:10.1016/S0038-0717(02)00274-2.
  • Wieder WR, Grandy AS, Kallenbach CM, Bonan GB. 2014. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences. 11:3899–3917. doi:10.5194/bg-11-3899-2014.
  • Wieder WR, Melannie DH, Benjamin NS, Wang Y, Dk C, Gordon BB. 2018. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob Chang Biol. 24:1563–1579. doi:10.1111/gcb.13979.
  • Wiesmeier M, Livia U, Eleanor UH, Birgit L, Margit L, Erika MS, Bas W, Eva R, Mareike L, Noelia GF. 2019. Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma. 333:149–162. doi:10.1016/j.geoderma.2018.07.026.
  • Xin X, Wu T, Li J, Wang Z, Li W, Wu F. 2013. How well does BCC_CSM1. 1 reproduce the 20th century climate change over China? Atmos Oceanic Sci Lett. 6:21–26. doi:10.1080/16742834.2013.11447053.
  • Yi C, et al. 2010. Climate control of terrestrial carbon exchange across biomes and continents. Environ Res Lett. 5(3):034007. doi:10.1088/1748-9326/5/3/034007.
  • Yi C, Jackson N. 2021. A review of measuring ecosystem resilience to disturbance. Environ Res Lett. 16: 053008. doi:10.1088/1748-9326/abdf09.
  • Yi C, Liu K, Li T. 1996. Research on relations of soil zonal distributions with climate in the monsoon region of the eastern part of China. Acta Pedol Sin. 33:390–396.
  • Yi C, Wei S, Hendrey G. 2014. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Sci Rep. 4:5472. doi:10.1038/srep05472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.